K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn chép đề thiếu rùi kìa, DE chui từ đâu ra vậy ??? sửa đề rõ ràng ra giúp mk vs, bạn vẽ hình rùi ghi giả thiết , kết luận gửi cho mk đi để mk làm

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

17 tháng 3 2020

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)

Có: AB=AC(gt)

Góc ABH = góc ACH(gt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=>HB=HC (2 cạnh tương ứng)

=>Góc CAH = góc BAH( 2 góc tương ứng)

b/ Ta có :HB=HC( cmt)

=> H trung điểm BC

Ta có: HB=HC=BC/2=8/2=4 (cm)

Xét tam giác ABH vuông tại H

Có AB^2= AH^2+HB^2 (pytago)

=>AH^2= AB^2-HB^2

AH^2= 5^2-4^2

AH^2=25-16

AH^2=9

AH= căng 9

=> AH= 3cm

Vậy AH=3cm

c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)

Có: AH chung

Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)

=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)

=> AD=AE ( 2 cạnh tương ứng)

=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)

Xét tam giác ABC cân tại A(gt)

Có: Góc B= (180 độ - góc A)/2 (định lí)

Xét tam giác ADE cân tại A (cmt)

Có: Góc D= (180 độ - góc A)/2 (định lí)

=> Góc B= Góc D ( =(180 độ - góc A)/2)

=> DE//BC ( 2 góc đồng vị bằng nhau)

TC
Thầy Cao Đô
Giáo viên VIP
27 tháng 12 2022

loading...

a) Xét hai tam giác vuông $AHB$ và $AHC$ có:

$AH$ là cạnh chung;

$AB = AC$ (gt);

Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)

Suy ra $HB = HC$ (Hai cạnh tương ứng)

$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).

b) Xét hai tam giác vuông $ADH$ và $AEH$ có:

$AH$ là cạnh chung;

$\widehat{BAH} = \widehat{CAH}$ (cmt);

Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).

Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.

23 tháng 1 2022

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)

b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có 

BA=CA(ΔBAC cân tại A)

AH chung

Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔDHB vuông tại D và ΔEHC vuông tại E có 

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

câu a đâu rồi bạn ơi ???

6 tháng 5 2016

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AH: chung

                                     AB=AC (gt)

=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)

  =>HB=HC (2 cạnh tương ứng)

b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)

Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)

                                                  52    = AH2 + 42

                                                                  AH2 = 52 - 42 = 25-16=9

                                                 AH=\(\sqrt{9}=3\)

c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)

Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:

                                        AH: chung

                                        góc BAH=góc CAH (cmt)

=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)

  =>HD=HE (2 cạnh tương ứng)

  =>tam giác DHE cân tại H

d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE

Mà HE=HD (cmt) => HC>HD