Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Trên tia đối AB lấy D / AB = AD
=> A là trung điểm BD
=> AB = 1/2BD
Mà AB = 1/2BC (gt)
=> BD = BC
+ Xét △ABC, △ADC có :
AB = AD ( A là trung điểm BD)
^CAB = ^CAD = 90o
CA chung
Do đó : △ABC = △ADC (c-c-c)
=> BC = DC ( 2canh tương ứng)
Xét △DCB có : BD = BC = DC (cmt)
=> △DCB đều
=> ^CBA = 60o (dấu hiệu nhận biết)
Vì △ABC (A = 90)
=> ^ABC + ^ACB = 90o
Mà ^ABC = 60o (cmt)
=> ^ACB = 90o - 60o = 30o
Vậy_
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà
Nên
Do đó là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của trên AC nên
BD=CD=12BC
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
Bài giải của thầy Xuân Minh (Cam Ranh)
Trên cạnh BC lấy D' sao cho ∆AD'C cân,kẻ D'H vuông góc AC ,D'K vuông góc AB ,có ∆AKD'=∆D'HA=>KD'=HA=1/2AC,,lại có KD'=1/2BD' nên BD'=AC=BD=> D' trùng D=>đpcm
d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có
HB=HC(ΔABH=ΔACH)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)
Suy ra: HE=HF(Hai cạnh tương ứng)
a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A
⇒\(\widehat{C}\)=30
MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180
⇒\(\widehat{A}\) + 30+30=180
⇒\(\widehat{A}\)=180-30-30
⇒\(\widehat{A}\)=120
xÉT ΔAHB vuông tại H, ΔAHC vuông tại H
CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)
\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)
⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)
⇒\(\widehat{BAH}=\widehat{CAH}\)
C.TRONG TAM GIÁC AHC VUÔNG TẠI H
⇒\(AC^2=HC^2+AH^2\)
⇒\(AC^2\)=\(4^2\)+\(3^2\)
⇒\(AC^2\)=16+9
AC=\(\sqrt{25}\)=5CM
D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F
CÓ: AH : CẠNH HUYỀN CHUNG
\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)
⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)
⇒HE=HF (2 CẠNH TƯƠNG ỨNG)
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
Em Chưa a học tới lớp 7
Trên tia đối AB lấy D / AB = AD
=> A là trung điểm BD
=> AB = 1/2BD
Mà AB = 1/2BC (gt)
=> BD = BC
+ Xét △ABC, △ADC có :
AB = AD ( A là trung điểm BD)
^CAB = ^CAD = 90o
CA chung
Do đó : △ABC = △ADC (c-c-c)
=> BC = DC ( 2canh tương ứng)
Xét △DCB có : BD = BC = DC (cmt)
=> △DCB đều
=> ^CBA = 60o (dấu hiệu nhận biết)
Vì △ABC (A = 90)
=> ^ABC + ^ACB = 90o
Mà ^ABC = 60o (cmt)
=> ^ACB = 90o - 60o = 30o