Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có \(\widehat{DAC}=\widehat{DCA}=60^0\)
nên ΔADC đều
b: Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}\)
=>AC/BC=1/2
hay AC=1/2BC
a, Ta có:
\(\widehat{ADC}=\widehat{A}-\widehat{DAB}=90^o-30^o=60^o\)
Mà \(\widehat{C}=\widehat{A}-\widehat{B}=90^o-30^o=60^o\)
Nên \(\widehat{ADC}=\widehat{C}=60^o\)
Do đó \(\Delta ADC\) là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: \(\Delta ADC\) là tam giác đều \(\Rightarrow AD=DC=AC\left(1\right)\)
Mà do AD là trung tuyến của \(\Delta ABC\) trên AC nên \(BD=CD=\dfrac{1}{2}BC\left(2\right)\)
Từ (1) và (2), suy ra: \(AC=BD=CD=\dfrac{1}{2}BC\) (đpcm)
Chúc bạn học tốt nha.
đề câu a phải là ADC là tgiac đều chứ ???
a) Ta có: góc DAC = BAC - BAD = 90 - 30 = 60 độ
Xét tgiac ADC có góc DAC = C = 60 độ => tgiac ADC đều (đpcm)
b) Tgiac ADC đều (cmt) => AD = AC (1)
Xét tgiac ABD có góc BAD = B = 30 độ
=> Tgiac ABD cân tại D => BD = AD (2)
(1), (2) => AC = BD
Lại có AC = CD (tgiac ADC đều)
=> AC = BD = DC
=> AC = 1/2 BC (đpcm)
a: \(\widehat{DAC}=90^0-30^0=60^0\)
\(\widehat{C}=90^0-30^0=60^0\)
Do đó: \(\widehat{DAC}=\widehat{C}=60^0\)
hay ΔDAC đều
b : Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}\)
nên AC/BC=1/2
=>AC=1/2BC
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà ˆC=ˆA−ˆB=90o−30o=60o
Nên ˆADC=ˆC=60o
Do đó ΔADCΔADC là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: ΔADCΔADC là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của ΔABCΔABC trên AC nên
BD=CD=12BC