Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M, N là trung điểm của AB và AC.
Ta có: AM = 1/2 AB (gt); AN = 1/2 AC (gt)
Mà AB = AC (gt)
⇒ AM = AN
Xét hai tam giác vuông AMI và ANI, ta có:
∠(AMI) = ∠(ANI) = 90o
AM = AN (chứng minh trên)
AI cạnh huyền chung
⇒ ΔAMI= ΔANI (cạnh huyền, cạnh góc vuông)
⇒ ∠(A1) = ∠(A2) (hai góc tương ứng)
Vậy AI là tia phân giác của ∠(BAC)
trong tam gaic can giao diem cua cac duong trung truc la gai diem cua cac duong phan giac
xong!
gọi k lag trung điểm của AB , H là trung Ac
Xét t/g KAI vs HAI
có K = H = 90 độ
KA = HA
chung AI
=> 2 t/g =nhau ( ch -cgv)
A1= A2 => AI là phân giác ( dễ cực lun )
Theo bài 8.3 ta đã có ∠A1 = ∠B1 , ∠A2 = ∠C2 (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra ∠(OAB) = ∠(OBA) , ∠(OAC) = ∠(OCA) , ∠(OBC) = ∠(OCB) . Kết hợp với(1) ∠(OBM) = ∠(OAM) , ∠(OCN) = ∠(OAN) , hay ∠(OAM) = ∠(OBC) = ∠(OCB) = ∠(OAN). Vậy OA là tia phân giác góc MAN.
Theo bài 8.3 ta đã có\(\widehat{A_1} =\widehat{B}_1;\widehat{A_2}=\widehat{C_1} \) (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra \(\widehat{OAB}=\widehat{OBA},\widehat{OAC}=\widehat{OCA},\widehat{OCB}=\widehat{OBC}\)Kết hợp với (1) \(\widehat{OBM}=\widehat{OAM},\widehat{OCN}=\widehat{OAN}\) hay\(\widehat{OAM}=\widehat{OBC}=\widehat{OCB}=\widehat{OAN}\) . Vậy OA là tia phân giác góc MAN.
Hình thì bạn kia vẽ rồi nên mình không vẽ nữa nha
Theo bài 8.3 ta đã cóˆA1=ˆB1;ˆA2=ˆC1A1^=B^1;A2^=C1^ (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra ˆOAB=ˆOBA,ˆOAC=ˆOCA,ˆOCB=ˆOBCOAB^=OBA^,OAC^=OCA^,OCB^=OBC^Kết hợp với (1) ˆOBM=ˆOAM,ˆOCN=ˆOANOBM^=OAM^,OCN^=OAN^ hayˆOAM=ˆOBC=ˆOCB=ˆOANOAM^=OBC^=OCB^=OAN^ . Vậy OA là tia phân giác góc MAN.
a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Vì Y nằm trên đường trung trực của AB
nên YA=YB(1)
Vì Y nằm trên đường trung trực của AC
nên YA=YC(2)
Từ (1) và (2) suy ra YB=YC
Xét ΔAYB và ΔAYC có
AY chung
YB=YC
AB=AC
Do đó: ΔAYB=ΔAYC
Suy ra: \(\widehat{BAY}=\widehat{CAY}\)
hay AY là tia phân giác của góc BAC
`Answer:`
Đặt đường trung trực của AB và AC lần lượt là IK và IH
Xét `\triangleAIK` và `\triangleAIH`:
`\hat{AHI}=\hat{AKI}=90^o`
`AK=AH`
`AI` chung
`=>\triangleAIK=\triangleAIH(ch-cgv)`
`=>\hat{KAI}=\hat{HAI}`
Vậy `AI` là tia phân giác của `\hat{A}`