Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.1:
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=8^2+6^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot CB=CA^2\)
=>\(CH\cdot10=6^2=36\)
=>CH=36/10=3,6(cm)
4.2:
Ta có: ΔCAD cân tại C
mà CB là đường cao
nên CB là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔCAB=ΔCDB
=>\(\widehat{CAB}=\widehat{CDB}\)
mà \(\widehat{CAB}=90^0\)
nên \(\widehat{CDB}=90^0\)
=>BD là tiếp tuyến của (C)
4.3:
Xét (C) có
PA,PM là các tiếp tuyến
Do đó: PA=PM
Xét (C) có
QM,QD là các tiếp tuyến
Do đó: QM=QD
Chu vi tam giác BPQ là:
\(C_{BPQ}=BP+PQ+BQ\)
=BP+PM+BQ+QM
=BP+PA+BQ+QD
=BA+BD
=2BA
=2*8=16(cm)
a, Ta có:
A
C
D
^
=
90
0
=> C thuộc đường tròn đường kính AD
Chứng minh: A B D ^ = 90 0 => B thuộc đường tròn đường kính AD => B,C cùng thuộc đường tròn đường kính AD
b, Tính được AD=10cm
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)