Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: lấy N là trung điểm của EC ta có: Xét tam giác EHC có I là trung điểm EC
O là trung điểm EH
=> OI là đường turng bình của tam giác EHC => OI//HC mà HC vuông góc AH => OI vuông góc AH
Xét tam giác AHI có EH vuông góc AI
IO vuông góc AH
=> AO là trường cao của tam giác AHI => AO vuông góc HI
Xét tam giác BEC có H là trung điểm BC; I là trung điểm EC => HI là đường trung bình
=> HI//BE mà HI vuông góc AO => BE cũng vuông góc AO
Ta có : Lấy N là trung điểm của EC ta có : Xét tam giác EHC có I là trung điểm EC
O là trung điểm của EH
suy ra OI là đường trung bình của tam giác EHC suy ra OI // HC mà HC vuông góc Ah suy ra OI vuông góc vói Ah
Xét tam giác AHI có EH vuông góc AI
IO vuông góc với AH
suy ra AO là đường cao của tam giác AHI suy ra AO vuông góc HI
Xét tam giác BEC có H là trung điểm BC , I là trung điểm EC suy ra HI là đường trung bình
suy ra HI // BE mà HI vuông góc AO suy ra BE vuông góc với AO
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH