Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xp sửa đề: Chứng minh: ∆BHA = ∆CKA. Từ đó suy ra ∆AHK cân.
`a,`
Xét Tam giác `BHC` và Tam giác `CKA` có:
\(\widehat{A} \) \(\text{chung}\)
\(AB=AC (\text {Tam giác ABC cân tại A})\)
\(\widehat{AHB}=\widehat{AKC}=90^0\)
`=> \text {Tam giác BHA = Tam giác CKA (ch-gn)}`
`-> AH=AK (\text {2 cạnh tương ứng})`
Xét Tam giác `AHK: AH = AK`
`-> \text {Tam giác AHK cân tại A}`
`b,` Vì Tam giác `AHK` cân tại `A ->`\(\widehat{AKH}=\widehat{AHK}\)
`->`\(\widehat{AHK}=\widehat{AKH}=\)\(\dfrac{180-\widehat{A}}{2}\)
Tam giác `ABC` cân tại `A ->`\(\widehat{ABC}=\widehat{ACB}\)
`->`\(\widehat{ABC}=\widehat{ACB}=\)\(\dfrac{180-\widehat{A}}{2}\)
`->`\(\widehat{AKH}=\widehat{ABC}\)
Mà `2` góc này nằm ở vị trí đồng vị
`-> \text {HK // BC (t/c đt' //)}`
a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
CB chung
\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b) Ta có: ΔBHC=ΔCKB(cmt)
nên HC=KB(hai cạnh tương ứng)
Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
c) Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
d) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
nên OB=OC(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: Xet ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chug
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM vuông góc BC
nen IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên HK//BC
mik cần gấp nha cứu mik
còn bạn nào hcoj giỏi thức ko huhu :((
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔAHK có AH=AK(ΔABH=ΔACK)
nên ΔAHK cân tại A
c: Xét ΔABC có
AK/AB=AH/AC
Do đó: KH//BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ABC}=74^0\)
nên \(\widehat{ACB}=74^0\)
Ta có: ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)
=>\(\widehat{BAC}=180^0-2\cdot74^0=32^0\)
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
c: Ta có: ΔAHB vuông tại H
=>\(AH^2+BH^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
=>AK=8(cm)
d: Xét ΔAKO vuông tại K và ΔAHO vuông tại H có
AO chung
AH=AK
Do đó: ΔAKO=ΔAHO
=>\(\widehat{KAO}=\widehat{HAO}\)
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔABC có AK/AB=AH/AC
nên KH//CB
cảm ơn :)