K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

Toán lớp 8

*) Trong \(\Delta ABC\), có: \(AE=EB;AD=DC\) => \(ED\) là đường trung bình của \(\Delta ABC\).

=> \(ED\)//\(BC\)\(ED=\frac{BC}{2}\Rightarrow2ED=BC\).

=> Tứ giác \(EDCB\) là hình thang (do \(ED\)//\(BC\))

*) Trong hình thang EDCB, có: \(EI=IB;DK=KC\Rightarrow IK\) là đường trung bình của hình thang \(EDCB\).

\(\Rightarrow IK=\frac{ED+BC}{2}=\frac{ED+2ED}{2}=\frac{3}{2}ED\)

*) Trong tam giác \(BED\) có: \(BI=IE;IM\)//\(ED\Rightarrow BM=MD\).

Và trong tam giác \(BED\), có: \(BI=IE;BM=MD\Rightarrow IM\) là đường trung bình của tam giác \(BED\Rightarrow IM=\frac{1}{2}ED\)

Tương tự thì \(NK=\frac{1}{2}ED\Rightarrow\)\(MN=IK-IM-NK=\frac{3}{2}ED-\frac{1}{2}ED-\frac{1}{2}ED=\frac{1}{2}ED\)

Vậy \(IM=MN=NK\)

 

24 tháng 9 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath

21 tháng 8 2017

A B C E D M N I K

Xét tg ABC có: E là t/đ của AB (gt) và D là t/đ của AC (gt)

=> DE là đg trung bình của tg ABC => ED = 1/2. BC  ; ED//BC

Xét hthang EDCB(ED//BC) có: M là t/đ của BE (gt) và N là t/đ của DC(gt)

=> MN là đg trung bình của hthang EDCB => MN//DE//BC ;  MN = 1/2.(DE+BC) . MÀ DE=1/2.BC (cmt)=> MN=3/2 . DE

=> MI+IK+KN =3/2  . DE  (1)

xét tg BDE có: M là t/đ của BE(gt) ; MI//ED ( vì I thuộc MN ; MN//DE) => I là r/đ của BD => MI là đg trung bình của tg BDE

=> MI =1/2.DE   (2)

 C/m tương tự ta đc: KN là đg trung bình của tg CDE => KN= 1/2.DE  (3)

Từ (2) ,(3)=> MI=KN =1/2.DE  (*)

Thay (2),(3) vào (1) ta đc:  1/2. DE  +IK   +1/2.  DE  =3/2.  DE   =>  IK =1/2. DE   (**)

Từ (*),(**)=> MI=IK=KN    (đpcm)

16 tháng 8 2018

Bạn có thể giải thích cho mình vì sao = 1/2.(DE+BC)Mà DE = 1/2BC => MN =3/2  là sao vậy mình không hiểu đoạn đó

2 tháng 10 2015

Nối ED, Gọi O là giao điểm của EC và BD, nổi AO cắt BC tại P. Vì IK là đường trung bình hình thang EDCB nênKN, MN, IM // ED //BC, do đó N, M lần lượt là trung điểm của EC, BD

=> IM, KN lần lượt là đường trung bình tam giác BED và CED nên IM=NK

ED=1/2 BC, IK = (ED+BC)/2, IK = IM+MN+NK. Thay các tham số này vào ta có MN=ED/2

DO đó Im=NM=MN

 

8 tháng 9 2018

Tham khao này Bài 40 (Sách bài tập - trang 84)

14 tháng 9 2019

Bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/191593688398.html

17 tháng 12 2023

Xét ΔABC có

E,D lần lượt là trung điểm của AB,AC

=>ED là đường trung bình của ΔABC

=>ED//BC và \(ED=\dfrac{1}{2}BC\)

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB,DC

=>MN là đường trung bình của hình thang BEDC

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{\left(\dfrac{1}{2}BC+BC\right)}{2}=\dfrac{3}{2}BC:2=\dfrac{3}{4}BC\)

Xét ΔBED có MI//ED

nên \(\dfrac{MI}{ED}=\dfrac{BM}{BE}\)

=>\(MI/ED=\dfrac{1}{2}\)

=>\(MI=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Xét ΔCED có KN//ED

nên \(\dfrac{KN}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)

=>\(KN=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Ta có: MI+IK+KN=MN

=>\(IK+\dfrac{1}{4}BC+\dfrac{1}{4}BC=\dfrac{3}{4}BC\)

=>\(IK=\dfrac{1}{4}BC\)

=>IK=MI=KN