Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trời ơi mình thấy khi vẽ hình xong rối hết cả mắt .
có bạn nào ko tin thử làm xem
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
B1: Chứng minh AM, BN, CP chia tam giác ABC thành 6 tam giác có diện tích bằng nhau. B2: => S( AOB) =2/3 S(ANB) => OB = 2/3 BN S(AOC) =2/3 S(ACP) => OC =2/3 CP S(AOB) = 2/3 S(AMB) => OA = 2/3 AM B3: kết luận
B1: Chứng minh AM, BN, CP chia tam giác ABC thành 6 tam giác có diện tích bằng nhau.
B2:
=> S( AOB) =2/3 S(ANB) => OB = 2/3 BN
S(AOC) =2/3 S(ACP) => OC =2/3 CP
S(AOB) = 2/3 S(AMB) => OA = 2/3 AM
B3: kết luận
Hình của bài như thế này phải không ? Nếu như thế thì mk giải cho ! Bài này cô mk dạy rồi !
Phân tích : Vì BP = \(\frac{1}{3}\)BC và hai hình tam giác : ABP và ABC có chung chiều cao hạ từ đỉnh A xuống đáy BC nên diện tích tam giác ABP bằng \(\frac{1}{3}\)diện tích tam giác ABC.
Tượng tự,diện tích mỗi hình tam giác BCM và CAN cũng bằng \(\frac{1}{3}\)diện tích tam giác ABC.
Vậy tổng diện tích ba tam giác : ABP , BMC , CAN bằng diện tích tam giác ABC.
Về mặt lý thuyết thì chúng có thể phủ kín tam giác ABC . Nhưng thật ra chúng để thừa lại phần diện tích tam giác IEF và chũng lại phủ lên các tam giác: IMC , EAN , FBP mỗi tam giác phủ hai lần nên thừ ra một lần . Chính điều này chứng tỏ :
SFBP + SEAN + SIMC = SIEF
Chúc bạn hok tốt !