Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC. Biết góc B=68 độ, AB=BM và AC=CM. Tính số đo góc C và góc BAC của tam giác ABC
M ở đâu ra vậy bn , ko hiểu đề bài , mong bạn xem lại
học tốt
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
a) +) Xét \(\Delta\)BID và \(\Delta\)BIC có
BI : cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BD = BC ( gt)
=> \(\Delta\)BID = \(\Delta\)BIC (c-g-c)
b) +) Xét \(\Delta\)BEC và \(\Delta\) BED có
BE: cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BC = BD ( gt)
=> \(\Delta\)BEC = \(\Delta\)BED (c-g-c)
=> EC = ED ( 2 cạnh tương ứng )
c) Theo câu a ta có \(\Delta\)BID = \(\Delta\)BIC
=> \(\widehat{BID}=\widehat{BIC}\) ( 2 góc tương ứng ) (1)
+)Mà \(\widehat{BID}+\widehat{BIC}=180^o\) (2) ( 2 góc kề bù )
Từ (1) và (2) => \(\widehat{BID}=\widehat{BIC}=\frac{180^o}{2}=90^o\)
+) Lại có BI cắt CD tại I ( gt)
=> BI \(\perp\) CD tại I
+) Mặt khác ta có
\(\hept{\begin{cases}BI\perp CD\left(cmt\right)\\AH\perp CD\left(gt\right)\end{cases}}\)
=> BI // AH ( đpcm)
d) Ta có \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\)
Mà \(\widehat{ABC}=70^o\) ( gt)
=> \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}=\frac{70^o}{2}=35^o\)
+)Theo câu c ta có BI // AH
=> \(\widehat{HAD}=\widehat{B_1}=35^o\) ( 2 góc so le trong )
+) Xét \(\Delta\)BIC vuông tại I
\(\Rightarrow\widehat{B_2}+\widehat{BCD}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{BCD}+35^o=90^o\)
\(\Rightarrow\widehat{BCD}=55^o\)
Vậy \(\widehat{DAH}=35^o;\widehat{BCD}=55^o\)
Xong rồi nha ___ mỏi hết cả tay rồi
Chúc bạn tui học tốt
Takiagawa Miu_