Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
a) Xét tam giác ABC có:
\(AC^2+BC^2=225+64=289=AB^2\)
Nên tam giác ABC vuông tại A.
b) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(CK=\dfrac{AC\cdot BC}{AB}=\dfrac{15\cdot8}{17}=\dfrac{120}{17}\left(cm\right)\\BK=\dfrac{BC^2}{AB}=\dfrac{64}{17}\left(cm\right)\)
Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:
\(\sin B=\dfrac{CK}{BC}=\dfrac{15}{17}\\ \Rightarrow\widehat{B}\approx62^0\)
\(\sin C=\dfrac{BK}{BC}=\dfrac{8}{17}\\ \Rightarrow\widehat{C}\approx28^0\)
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔBAC vuông tại C
1: Xét ΔABC có \(CA^2+CB^2=AB^2\)
nên ΔCAB vuông tại C
2: Xét ΔCAB vuông tại C có CK là đường cao
nên \(CK\cdot AB=CA\cdot CB\)
=>\(CK\cdot5=3\cdot4=12\)
=>CK=2,4(cm)
Xét ΔCAB vuông tại C có CK là đường cao
nên \(\left\{{}\begin{matrix}CA^2=AK\cdot AB\\CB^2=BK\cdot BA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AK=\dfrac{4^2}{5}=3,2\left(cm\right)\\BK=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)
\(a,\) Vì \(10^2=6^2+8^2\Leftrightarrow BC^2=AB^2+AC^2\) nên tg ABC vg tại A (PTG đảo)
\(b,\) Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\sqrt{3,6\cdot6,4}=4,8\left(cm\right)\end{matrix}\right.\)
\(c,\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\left(t/c.đường.p/g\right)\\ \Rightarrow AD=\dfrac{3}{5}DC\)
Mà \(AD+DC=AC=8\)
\(\Rightarrow\dfrac{8}{5}DC=8\Rightarrow DC=5\left(cm\right)\\ \Rightarrow AD=3\left(cm\right)\)
\(\Rightarrow S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9\left(cm^2\right)\)
\(\Rightarrow S_{BCD}=S_{ABC}-S_{ADB}=\dfrac{1}{2}AB\cdot AC-9=24-9=15\left(cm^2\right)\)
a: ΔBCA vuông tại C
=>BC^2+CA^2=BA^2
=>BC^2=10^2-8^2=36
=>BC=6cm
Xét ΔBAC vuông tại C có CK là đường cao
nên CK*AB=CA*CB; AK*AB=AC^2; BK*BA=BC^2
=>CK=4,8cm; AK=8^2/10=6,4cm; BK=6^2/10=3,6cm
b: Xét tứ giác CHKI có
góc CHK=góc CIK=góc HCI=90 độ
=>CHKI là hình chữ nhật
c: ΔCKA vuông tại K có KI là đường cao
nên CI*CA=CK^2
ΔCKB vuông tại K có KH là đường cao
nên CH*CB=CK^2
=>CI*CA+CH*CB=2*CK^2
a: AB^2=BC^2+AC^2
=>ΔABC vuông tại C
b: E ở đâu vậy bạn?