Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta biết trong 1 tam giác, 3 đường trung tuyến đồng quy tại một điểm. Do đó trung tuyến $CP$ cắt $MP,BN$ tại $Q$ tại $G$ hay $P,G,C$ thẳng hàng.
Có: \(\frac{BP}{PA}=\frac{MB}{MC}(=1)\) nên theo định lý Ta-let đảo thì \(PM\parallel AC\)
hay \(\Rightarrow QM\parallel NC; PQ\parallel AN\)
Áp dụng hệ quả của định lý Ta-let:
\(\triangle BNC; QM\parallel NC\Rightarrow \frac{QM}{NC}=\frac{BQ}{BN}\)
\(\triangle ABN; PQ\parallel AN\Rightarrow \frac{PQ}{AN}=\frac{BQ}{BN}\)
\(\Rightarrow \frac{QM}{NC}=\frac{PQ}{AN}\). Mà \(AN=NC\Rightarrow QM=QP\)
\(\Rightarrow QM=\frac{1}{2}PM\)
Do đó: \(\frac{S_{GMQ}}{S_{GPM}}=\frac{QM}{PM}=\frac{1}{2}(1)\)
\(\frac{S_{GPM}}{S_{MPC}}=\frac{PG}{PC}=\frac{1}{3}(2)\) (theo tính chất trung tuyến và trọng tâm)
\(\frac{S_{MPC}}{S_{CPB}}=\frac{MC}{BC}=\frac{1}{2}(3)\)
\(\frac{S_{CPB}}{S_{CAB}}=\frac{PB}{AB}=\frac{1}{2}(4)\)
Từ \((1);(2);(3);(4)\Rightarrow \frac{S_{GPM}}{S_{CAB}}=\frac{1}{2}.\frac{1}{3}.\frac{1}{2}.\frac{1}{2}=\frac{1}{24}\)
\(\Rightarrow S_{ABC}=24S_{GMQ}=24.10=240(cm^2)\)
Ta có: SAED = 1/14SABC => ED = 1/14BC
SAFD = 7/50SABC => FD = 7/50BC
=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC
=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)
Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC
SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC
=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)
Gọi I, J lần lượt là trung điểm các cạnh AB, AC
Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4
Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF
Mà ∆IBF cân tại I, ∆AJF cân tại J
=> ^IFB = ^FAJ (1)
∆IAF cân tại I => ^IFA = ^IAF (2)
Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.