Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM^2=\dfrac{BC^2}{4}\)(1)
Ta có: \(\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\)
\(=\dfrac{BC^2}{2}-\dfrac{BC^2}{4}\)
\(=\dfrac{BC^2}{4}\)(2)
Từ (1) và (2) suy ra \(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\)
Nếu đến tối nay mà còn bí thì hú mình. Mình không hứa sẽ làm được bài này nhưng hứa sẽ suy nghĩ cùng b :p
Góc 2α = A M H ^
a, Ta có: sin 2 α = A H A M = 2 A H A M = 2 A B . A C B C 2 = 2 sin α . cos α
b, 1 + cos2α = 1 + H M A M = H C A M = 2 H C B C = 2 . A C 2 B C 2 = 2 cos 2 α
c, 1 – cos2α = 1 - H M A M = H B A M = 2 H B B C = 2 . A B 2 B C 2 = 2 sin 2 α
chị giải được bài này chưa ạ??? Cho em xin cách giải được không ạ?