Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c:
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
=>góc ECB=góc DBC
BD vuông góc AC
FC vuông góc AC
=>BD//FC
góc ECB=góc DBC
góc DBC=góc FCB
=>góc ECB=góc FCB
=>CB là phân giác của góc ECF
a/
Ta có BG vuông góc AB; CH vuông góc AB => BG//CH
Ta có BH vuông góc AC; CG vuông góc AC => BH//CG
=> BHCG là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một)
M là giao 2 đường chéo của hình bình hành BHCG => M là trung điểm của BC (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)
b/ Ta có H trực tâm của tg ABC => AH vuông góc BC; AB vuông góc CE => ^PAH = ^HCM (góc có cạnh tương ứng vuông góc) (1)
Ta có PQ vuông góc HG (đề bài) và AB vuông góc CE (đề bài) => ^APH = ^CHM (góc có cạnh tương ứng vuông góc) (2)
Từ (1) và (2) => tg CMH đồng dạng với tg AHP
c/
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
Xét tam giác EAC và tam giác ECF có
^AEC = ^CEF = 900
^CAE = ^ECF ( cùng phụ ^ACE )
Vậy tam giác EAC ~ tam giắc ECF (g.g)
\(\dfrac{EA}{EC}=\dfrac{EC}{EF}\Rightarrow CÈ^2=EA.EF\)
Xét tam giác ABD và tam giác ACE có
^A _ chung ; AB = AC
Vậy tam giác ABD = tam giác ACE (ch-gn)
=> BD = CE ( 2 cạnh tương ứng )
=> BD^2 = AE.EF