K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

A B C D E F

Xét \(\Delta ABE\)và   \(\Delta ACF\)có:

    \(\widehat{A}\)chung

   \(\widehat{AEB}=\widehat{AFC\:}=90^0\)

suy  ra:   \(\Delta ABE~\Delta ACF\)(g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)hay  \(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\)có:

   \(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)

   \(\widehat{A}\) chung

suy ra:  \(\Delta AEF~\Delta ABC\) (c.g.c)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔABE∼ΔACF(g-g)

b) Ta có: ΔABE∼ΔACF(cmt)

nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có

\(\widehat{DCA}\) chung

Do đó: ΔEBC∼ΔDAC(g-g)

19 tháng 3 2021

loading...  loading...  loading...  

3 tháng 3 2018

kết bạn mình nghe

  
  
  

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)

Xét ΔFHE và ΔBHC có 

\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)

\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)

1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(đpcm)

7 tháng 3 2022

undefined

đa tạ huynh đệ eoeo