Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 252=152+202 hay BC2=AB2+AC2
=> ▲ABC vuông tại A
b) Xét ▲ABC vuông tại A có
SinB = \(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
TanC = \(\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)
=> SinB + TanC = \(\frac{4}{5}+\frac{3}{4}=\frac{31}{20}\)
c) I là trung điểm AC => AI = 10cm.
=> BI2 = 102+152= 325 => BI = \(5\sqrt{13}\)
Xét ▲ABI có TanI = \(\frac{3}{2}\)=> góc BIA = 56'18'
=> BIC = 180 - 56'18' = 123 độ 41 phút.
\(a,AB^2+AC^2=15^2+20^2=625=25^2=BC^2\)
Vậy ABC là tam giác vuông tại A (pytago đảo)
\(b,\)Áp dụng HTL tam giác ABC vuông tại A, đường cao AH
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\CH=\dfrac{AC^2}{BC}=12\left(cm\right)\\AH=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Vì AM là phân giác nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow MB=\dfrac{3}{4}MC\)
Mà \(MB+MC=BC=25\Rightarrow\dfrac{7}{4}MC=25\)
\(\Rightarrow MC=\dfrac{100}{7}\left(cm\right);MB=\dfrac{75}{7}\left(cm\right)\)
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HC=AC^2/BC=20^2/25=16cm
Xét ΔACB vuông tại A có sin ACB=AB/BC=3/5
=>góc ACB=37 độ
b: Xét ΔHAB có HI/HA=HK/HB
nên IK//AB
=>KI vuông góc AC
Xét ΔCAK có
KI,AH là đường cao
KI cắt AH tại I
=>I là trực tâm
c: Xét ΔKBA và ΔIAC có
góc KBA=góc IAC
AB/AC=KB/IA=HB/HA
=>ΔKBA đồng dạng với ΔIAC
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên \(\widehat{B}\simeq53^0\)
a/
Xét tg vuông ABC
\(AH^2=BH.HC\) (Trong tg vuông bình phương đường đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{2.6}=2\sqrt{3}\)
\(BC=BH+HC=2+6=8\)
\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB=\sqrt{2.8}=4\)
b/
Xét tg vuông ABH
\(\sin B=\dfrac{AH}{AB}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)
Xét tg vuông ACH
\(\tan C=\dfrac{AH}{HC}=\dfrac{2\sqrt{3}}{6}=\dfrac{\sqrt{3}}{3}\)
c/
a) \(AH^2=HB.HC=2.6=12\Rightarrow AH=2\sqrt[]{3}\left(cm\right)\)
\(AB^2=AH^2+BH^2=12+4=16\Rightarrow AB=4\left(cm\right)\left(Pitago\right)\)
b) \(SinB=\dfrac{AH}{AB}=\dfrac{2\sqrt[]{3}}{4}=\dfrac{\sqrt[]{3}}{2}\)
\(tanC=\dfrac{AH}{HC}=\dfrac{2\sqrt[]{3}}{6}=\dfrac{\sqrt[]{3}}{3}\)
Câu C bạn xem lại đề
a) Áp dụng hệ thức lượng △NMC vuông tại N ta có :
\(\frac{1}{MN^2}+\frac{1}{NC^2}=\frac{1}{NK^2}\)
\(\Leftrightarrow\frac{1}{15^2}+\frac{1}{NC^2}=\frac{1}{12^2}\)
\(\Leftrightarrow NC=20\)cm
Ta có : △ABC vuông tại A có AM là đường trung tuyến (M thuộc BC)
=> AM = MC
=> △AMC cân tại M
=> MN đồng thời vừa là đường cao vừa là đường trung tuyến
=> AN = NC = \(\frac{AC}{2}\)
Mà NC = 20cm
=> AC = 40cm
=> \(S_{AMC}=\frac{40.15}{2}=300\left(cm^2\right)\)
Ta có : \(S_{AMC}=\frac{1}{2}S_{ABC}\)
vì có cùng độ dài đường cao và \(MC=\frac{1}{2}BC\)
Vậy \(S_{ABC}=600cm^2\)