K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Vuông góc BC tại E

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: Sửa đề: ED cắt AB tại F, chứng minh ΔDFC cân

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>DF=DC

=>ΔDFC cân tại D

c: Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

ΔBFC cân tại B

mà BH là đường phân giác

nên H là trung điểm của FC

d: Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE

9 tháng 2 2019

a)Xét ΔABD và ΔEBD có:

AB=BE(gt)

ABDˆ=EBDˆ(gt)ABD^=EBD^(gt)

BD:cạnh chung

=> ΔABD=ΔEBD(c.g.c)

=> BADˆ=BEDˆ=90oBAD^=BED^=90o

=> DE⊥BCDE⊥BC

Vì: ΔABD=ΔEBD(cmt)

=>AD=DE

Vì: AB=BE(gt) ; AD=DE(cmt)

=> B,D thuộc vào đường trung trực của đt AE

=>BD là đường trung trực của đt AE

=>AE⊥BDAE⊥BD

b) Xét ΔDEC vuông tại E(cmt)

=> DE<DCDE<DC

Mà: DE=AD

=> AD<DC

c)Vì: BF=BA+AF ; BC=BE+EC

Mà: BF=BC(gt); BE=BA(gt)

=>AF=EC

Xét ΔADF và ΔEDC có:

AF=EC(cmt)

FADˆ=DECˆ=90o(cmt)FAD^=DEC^=90o(cmt)

AD=DE(cmt)

=>ΔADF=ΔEDC(c.g.c)

11 tháng 2 2021

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

8 tháng 7 2021

Xin lỗi mình không thể chụp ảnh.

Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.

1. Xét tam giác ABD và tam giác EBD có:

BAD=BED=90o (gt)

ABD= EBD( BD là tia phân giác)

BD chung ( gt)

=> 2 tam giác = nhau

=> AB=BE ( 2 cạnh tương ứng)

Xét tam giác EBF và tam giác ABC có:

B1=B2(cmt)

A=E  (cmt)

BE=BA( cmt)

=> 2 tam giác = nhau

2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)

3.Ta có: AD=ED( tam giác ABD= EBD) (1)

Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)

Từ (1)và (2) => DC>AD ( đcpm)

Ý 2:

Có: BA=BE(cmt)

BF=BC( tam giác BFE= BCA)

và BC= BE+EC ; BF= AB+AF

=> AF= EC

=> Tam giác BFC cân

5. Gọi giao của BH và FC là G.

Có tam giác BFC cân( cmt)

=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)

Mặt khác,BH vuông góc với AE

=> AE song song FC ( từ vuông gó đến song song)

Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.

 

8 tháng 7 2021

mình đánh máy hơi lâuleuleu

a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC
c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: AB=AC

IB=IC

=>AI là trung trực của BC

=>A,I,M thẳng hàng