K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

hình tự vẽ bn nha                                                                                                                                                                               a) ta có:tam giác abc vuông tại a =>  bac = 90                                                                                                                                xét tam giác abc có: abc + acb + cab = 180(t/c)                                                                                                                                      mà bac = 90(cmt)     ;     acb = 36(gt)                                                                                                                                                => 90 +36 + abc = 180                                                                                                                                                                           126 + abc = 180                                                                                                                                                                                abc= 54                                                                                                                                                                               

b) ta có: abd = ebd ( vì bd là phân giác của abc)                                                                                                                                 xét tam giác abd và tam giác ebd có:  ba=be(gt)      ;    abd=ebd(cmt)      :     chung cạnh bd                                                             => tam giác abd = tam giác ebd ( c.g.c) (đpcm)                                                                                                                          

c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b                                                                                                      tam giác abc vuông tại a(gt) => ab vuông góc với ac                                                                                                                        ta có: xy vuông góc với ab (gt)                                                                                                                                                                ab vuông góc với ac(cmt)                                                                                                                                                          => xy song song với ac(t/c)                                                                                                                                                          => bak = abd ( so le trong)                                                                                                                                                         xét tam giác abk vuông tại b và tam giác bad vuông tại a có:  bak=abd(cmt)          ;     chung cạnh ba                                                => tam giác abk= tam giác abd ( cgv-gnk)                                                                                                                                        => ak=bd(2 cạnh tương ứng)                                                                                                                                                      

21 tháng 5 2018

umk mk cảm ơn nhưng có hơi lỗi :(

9 tháng 12 2016

Kí hiệu tam giác là t/g nhé

a) t/g ABC vuông tại A có: ACB + ABC = 90o

=> 36o + ABC = 90o

=> ABC = 90o - 36o = 54o

b) Xét t/g ABD và t/g EBD có:

AB = BE (gt)

ABD = EBD ( vì BD là phân giác của ABE)

BD là cạnh chung

Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)

c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:

ABD = BAK (so le trong)

AB là cạnh chung

Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)

=> BD = AK (2 cạnh tương ứng) (đpcm)

d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF

Do đó 3 đường này cùng đi qua 1 điểm

Mà BH và CA cắt nhau tại D

Nên EF đi qua D

=> E, D, F thẳng hàng (đpcm)

 

9 tháng 12 2016

Câu d sai, lm lại

Nối đoạn FD

t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)

=> BC = BF (2 cạnh tương ứng)

t/g CBD = t/g FBD (c.g.c)

=> CD = FD (...)

t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)

=> CDH = FDH (...)

Có: CDH + CDE + EDB = 180o

Mà CDH = ADB ( đối đỉnh)

= FDH = EDB

Do đó, CDH + CDE + HDF = 180o

=> EDF = 180o

=> E, D, F thẳng hàng (đpcm)

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: ta có: ΔABD=ΔEBD

nên DA=DE

mà BA=BE

nên BD là đường trung trực của AE

hay BD⊥AE

15 tháng 4 2022

mình không biết vẽ hình nên bạn tự vẽ nha

a) có :BD là tia phân giác của góc ABC 

       => góc ABD = góc DBC hay góc ABD = góc DBE 

xét △ABD và △EBD có :

           AB=EB

          góc ABD = góc DBE 

          DB là cạnh chung

=> △ABD=△EBD(c.g.c)

b) có : △ABD=△EBD => AD=ED

                                   =>D ∈ đường trung trực của EA 

 có AB=EB => B thuộc đường trung trực của EA 

 => BD là đường trung trực của EA 

 => BD⊥EA hay BH⊥EA

c) có : △ABD=△EBD => góc ADB= góc BDE(1)

 có AK// BD

=> góc ADB= góc KAD(SLT)(2)

  và góc AKD= góc BDE(ĐV)(3)

từ (1),(2),(3) => góc KAD= góc AKD

                     => △ADK cân tại D

                     => DA=DK

mà AD=DE  =>DE=DK=AD

                   => D là trung điểm của EK

d) có : góc BDA= góc DBC+góc C ( vì là góc ngoài) và góc ABD=góc DBC

        =>góc DBA=góc ABD+góc C

        =>góc DBA<góc ABD

trong △ABD có :góc DBA<góc ABD

                          => AD<AB( quan hệ giữa cạnh và góc đối diện)

lại có AD=DK=DE

=> AB>DK

=>AB+AB>DK+DK

=>2AB>DK+DE

=>KE<2AB

nếu có chỗ sai mong thầy cô và các bạn trong hoc24 giúp mình sửa giúp để mình có thể giỏi hơn

22 tháng 7 2021

undefined

a) Xét ΔABH  và ΔACH có:

   AB=AC (ΔABC cân tại A)

  AH là cạnh chung

  HB=HC(H là trung điểm của BC)

Nên ΔABH =ΔACH (c.c.c)

=>\(\widehat{AHB}=\widehat{AHC}\)( 2 GÓC TƯƠNG ỨNG)

Ta có: \(\widehat{AHB}+\widehat{AHC}=180^O\)( 2 góc kề bù)

=>\(\widehat{AHB}.2=180^O\Rightarrow\widehat{AHB}=90^O\)

=>AH ⊥ BC

b) Vì ΔABH =ΔACH => \(\widehat{BAH}=\widehat{CAH}\)

Ta có: AD+BD=AB ( D nằm giữa A và B)

          AI+IC=AC( I nằm giữa A và C)

Mà AB=AC, BD=IC =>AD=AI

Cho AH và DI cắt nhau tại F

Xét ΔDFA và ΔIFA có:

FA là cạnh chung

\(\widehat{BAH}=\widehat{CAH}\)

AD=AI

  Nên ΔDFA=ΔIFA  (c.g.c)    

=>\(\widehat{DAF}=\widehat{IAF}\)

=>A là tia phân giác của góc DHI

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: DA=DE(Hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(Cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

Xét ΔDFC có DF=DC(cmt)

nên ΔDFC cân tại D(Định nghĩa tam giác cân)