K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

Đề thiếu rồi bạn ơi bạn xem lại đề đi

6 tháng 1 2022

Cho tam giác ABC có AB = AC, M là trung điểm của BC: a , Trên tia đối của tia MA lấy điểm D sao cho MA = MD .Chứng minh AB song song với CD b, Trên nửa mặt phẳng bờ AC không chứa điểm B. Vẽ tia Ax song song với BC lấy điểm I thuộc tia Ax sao cho AI = BC Chứng minh ba điểm D ,C ,I thẳng hàng

10 tháng 12 2018

Vậy E làm cảnh hả bạn

Ko cm đc đâu

4 tháng 5 2023

chữ như gà bới

 

14 tháng 5

Tại sao hq lại song song ad

 

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

25 tháng 7 2021

A B C M N E

Từ C vẽ đường thẳng song song AB cắt MN tại E

Xét tam giác  BMC và tam giác ECM ta có

MC là cạnh chung

góc BMC = góc MCE ( 2 góc so le trong và AB//CE)

góc BCM = góc CME ( 2 góc so le trong và MN //BC)

=> tam giác BMC = tam giác ECM ( g-c-g)

=> BM= CE

mà AM = BM ( M là trung điểm AB )

nên CE = AM

Xét tam giác ANM và tam giác CNE ta có

AM = CE ( cmt)

góc MAN = góc NCE ( 2 góc so le trong và AB//CE)

góc AMN = góc NEC ( 2 góc so le trong và AB//CE)

=> tam giac ANM = tam giác CNE (g-c-g)

=> AN= NC

=> N là trung điểm AC

a: Xét ΔABH và ΔACH có

AB=AC

BH=CH

AH chung

=>ΔABH=ΔACH

b: ΔABC cân tại A có AH là đường trung tuyến

nên AH là phân giác của góc BAC và AH vuông góc BC

Xét ΔAME và ΔANE có

AM=AN

góc MAE=góc NAE

AE chung

=>ΔAME=ΔANE

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

`@` `\text {dnv4510}`

`a,`

Xét `\Delta ABC:`

`\text {BC > AC > AB (5 cm > 4 cm > 3 cm)}`

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`=>` $\widehat {A} > \widehat {B} > \widehat {C}$.

`b,`

Ta có: A là trung điểm của BD

`-> \text {AC là đường trung tuyến}` `(1)`

K là trung điểm của BC

`-> \text {DK là đường trung tuyến}` `(2)`

Mà \(\text{AC }\cap\text{ DK = M}\) `(3)`

Từ `(1), (2)` và `(3)`

`-> \text {M là trọng tâm của} \Delta ABC` 

`@` Theo tính chất của trọng tâm trong `\Delta`

\(\text{MC = }\dfrac{2}{3}\text{AC}\)

Mà \(\text{AC = 4 cm}\)

`->`\(\text{MC = }\dfrac{2}{3}\cdot4=\dfrac{8}{3}\left(\text{cm}\right)\)

Vậy, độ dài của MC là `8/3 cm`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{A là trung điểm của BC}\\\text{AC }\bot\text{ BD}\end{matrix}\right.\)

`->`\(\text{CA là đường trung trực}\)

Ta có: \(\left\{{}\begin{matrix}\text{AC là đường trung trực (hạ từ đỉnh A)}\\\text{AC là đường trung tuyến (hạ từ đỉnh A) }\end{matrix}\right.\)

`@` Theo tính chất của các đường trong `\Delta` với `\Delta` cân

`->` \(\Delta\text{ BDC cân tại C (đpcm).}\)

loading...

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=8/3cm

c: Xét ΔCBD co

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

25 tháng 7 2021

giả sử N là trung điểm AC

mà M là trung điểm AB ( gt )

=> MN là đường trung bình tam giác ABC 

=> MN // BC 

Vậy N là trung điểm AC