K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có 

\(\widehat{ABD}\) chung

Do đó: ΔAHD∼ΔBAD(g-g)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AH^2+HD^2=AD^2\)

\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)

hay HD=3(cm)

Ta có: ΔAHD∼ΔBAD(cmt)

nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)

\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)

hay \(AB=\dfrac{20}{5}cm\)

Vậy: \(AB=\dfrac{20}{5}cm\)

b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)

Do đó: ΔAHD∼ΔBHA(g-g)

\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HA^2=HB\cdot HD\)(đpcm)

a: Xét ΔAEC và ΔAFB có

AE=AF

góc EAC chung

AC=AB

=>ΔAEC=ΔAFB

b: AE+EB=AB

AF+FC=AC

mà AE=AF và AB=AC

nên EB=FC

Xét ΔEBC và ΔFCB có

EB=FC

góc EBC=góc FCB

BC chung

=>ΔEBC=ΔFCB

8 tháng 6 2015

Xét tam giác AHB vuông tại H và Tam giác CHA vuông tại H có :

                     HAB = HCA (hai góc phụ nhau)

 => tam giác AHB đồng dạng AHC

B,Tam giác AHB vuông tại H , theo pytaago => BH = \(\sqrt{AB^2-AH^2}=9\) 

AHB đồng dang CHA => AH/CH=BH/AH => AH^2=BH.CH => CH = AH^2/BH = 12^2/9=16

TAm giác AHC vuông tại H , theo py ta go : AC  = \(\sqrt{AH^2+HC^2}=20\)

C,BC = BH +HC = 9+16 = 25 

EC/BC = 5/25 = 1/5 (1)

FC/AC = 4/20 = 1/5(2)

Từ (1) và (2)=> EC/BC = FC/AC

=> Tam giác ABC đồng dạng với TAm giác FEC (C chung EC/BC=FC/AC , c.g.c)

=> BAC = EFC = 90 độ => FEC vuông tại F

D,ABC đồng dạng FEC => AC/FC = BC/ EC => EC.AC=FC.BC

4 tháng 3 2017

cho tam 

7 tháng 5 2019

a)Vì tam giác ABCD là HCN =>góc A = 90 độ

xét tam giác AHD VÀ TAM GIÁC ABD CÓ ;

GÓC D CHUNG

GÓC AHD = GÓC A

=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD(G.G)

B)vÌ TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD (THEO CÂU A)

=>GÓC HAD=GÓC ABD(1)

XÉT TAM GIÁC AHD VÀ TAM GIÁC AHB CÓ :

GÓC AHD = GÓC AHB (=90 ĐỘ )

GÓC HAD= GÓC ABD (THEO 1)

=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BHA(G.G)

=>AH/HD=BH/AH

=>AH^2=BH.HD(DPCM)

2 tháng 9 2015

                                                                GIAI

a/Xet tam giac ACM va tam giac BME,co :

AM=MẸ̣̣̣(gt)

BM=MC̣̣̣̣̣̣̣(gt)

gocAMC=gocBME(ḍḍ)

Vay tam giac AMC = tam giac EMB(cgc)

Suy ra goc MAC = goc MEB(2 goc tuong ung)

ma goc MAC va goc MBE la 2 goc so le trong

nen AC//BE

b/Taco goc BMI+IMC=180

ma goc IMC= goc BMK(dd)

nen goc BMI+ gocBMK=180

Vay 3 diem I,M,K thang hang

A I C E M B K

26 tháng 12 2018

TA có;AM=EM và BM=CM

Suy ra;AE và BC cắt nhau tại trung điểm M    (câu a)

Do đó;tứ giác ABEC là hình binh hành

Nên AC song song với BE

27 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật