K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\)

\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\)

\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\right)\)

\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2017}{2^{2017}}\)

\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2017}{2^{2016}}-\frac{2016}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)

\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{2^{2016}}\)

\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{2016}}\)

Mà \(\frac{1}{2^{2016}}>0\)

\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2016}}< \frac{1}{2}\)

\(\Leftrightarrow\)\(1+A-\frac{2017}{2^{2017}}< 1+\frac{1}{2}-\frac{1}{2^{2016}}-\frac{2017}{2^{2017}}\)

\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2016}}+\frac{2017}{2^{2017}}\right)\)

Mà \(\frac{1}{2^{2016}}+\frac{2017}{2^{2017}}\)

\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)

\(\Rightarrow\)\(T< \frac{3}{2}.2\)

\(\Rightarrow\)\(T< 3\)

Vậy \(T< 3\)

Chúc bạn học tốt ~ 

13 tháng 4 2018

\(T< 3\)

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you

24 tháng 6 2015

 

Vì: \(\frac{3}{21}=\frac{3}{21}\)

\(\frac{3}{22}\) < \(\frac{3}{21}\)

\(\frac{3}{23}\) < \(\frac{3}{21}\)

\(\frac{3}{24}\)<\(\frac{3}{21}\)

\(\frac{3}{25}\)\(\frac{3}{21}\)

.....

\(\frac{2}{29}\)<\(\frac{3}{21}\)

\(\frac{2}{30}\)<\(\frac{3}{21}\)

Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)

Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)

Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)

=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)

Vậy E < M

14 tháng 3 2017

bít kq nhưng ko thích giải

18 tháng 12 2020

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

19 tháng 4 2021
Bạn Phong Thần trả lời hay quá.
10 tháng 2 2021

22 tháng 3 2018

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\)  => \(\frac{T}{2}=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\)

=> \(T-\frac{T}{2}=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\right)\)

<=> \(\frac{T}{2}=\frac{2}{2^1}+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2017}{2^{2016}}-\frac{2016}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)

<=> \(\frac{T}{2}=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)

Đặt: \(M=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}=>2M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\)

=> \(2M-M=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

=> \(M=\frac{1}{2}-\frac{1}{2^{2016}}< \frac{1}{2}\)

=> \(\frac{T}{2}< 1+\frac{1}{2}-\frac{2017}{2^{2017}}< 1+\frac{1}{2}=\frac{3}{2}\)

=> T < 3

4 tháng 4 2022

`Answer:`

\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)

\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)

\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)

\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)

Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)

\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)

\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)

\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)

Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)

\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)

`=>T<3`