Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=25-x^2-\left(15-x^2\right)=10\)
\(\Rightarrow y=\sqrt{25-x^2}+\sqrt{15-x^2}=\dfrac{10}{2}=5\)
Mk sửa lại đề nha
\(A=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\left(ĐKXĐ:x\ne25\right)\)
\(A=\left(\frac{x-5\sqrt{x}-x+25}{x-25}\right):\left(\frac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(A=\left(\frac{25-5\sqrt{x}}{x-25}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(A=\left(\frac{5.\left(5-\sqrt{x}\right)}{x-25}\right):\left(\frac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)
Tiếp theo, kết hợp các thành phần tương tự:
A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3
Đơn giản hóa biểu thức:
A = -11x + 15/√x + 4
Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.
Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)
Dấu = xảy ra khi x=0
\(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
Đề đúng ch bn, kiểm tra lại giúp mk vs
Ta xét ĐKXĐ của bài toán:
\(\left\{{}\begin{matrix}x+5\ge0\\2-x\ge0\\x^2-25\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\le2\\\left|x\right|\ge5\end{matrix}\right.\)\(\Leftrightarrow x=-5\)
Thử lại vào phương trình thấy không thỏa mãn.
Vậy phương trình vô nghiệm.
a) \(E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(E=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(E=\frac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(E=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(E=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(E=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(E=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(E=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(E=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(E=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(E=\frac{\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)}\)
b)đkxđ: \(x\ne1\); x\(\ge0\)
E=\(\frac{1}{3}\)<=>\(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{3}\)
<=>3(-5\(\sqrt{x}\)+2)=\(\sqrt{x}+3\)
<=>-15\(\sqrt{x}+6\)\(-\sqrt{x}\)=3
<=>\(-16\sqrt{x}=-3\)
<=>\(\sqrt{x}=\frac{3}{16}\)
\(< =>\left\{{}\begin{matrix}x=\frac{9}{256}\left(tm\right)\\x=\frac{-9}{256}\left(ktm\right)\end{matrix}\right.\)
vậy S=\(\left\{\frac{9}{256}\right\}\)
\(\sqrt{25-x^2}-\sqrt{9-x^2}=2\)
ĐK : \(-3\le0\le3\)
\(\Leftrightarrow\left(\sqrt{25-x^2}-5\right)-\left(\sqrt{9-x^2}-3\right)=0\)
\(\Leftrightarrow\frac{25-x^2-25}{\sqrt{25-x^2}+5}-\frac{9-x^2-9}{\sqrt{9-x^2}+3}=0\)
\(\Leftrightarrow\frac{-x^2}{\sqrt{25-x^2}+5}-\frac{-x^2}{\sqrt{9-x^2}+3}=0\)
\(\Leftrightarrow-x^2\left(\frac{1}{\sqrt{25-x^2}+5}-\frac{1}{\sqrt{9-x^2}+3}\right)=0\)
\(\Rightarrow x=0\)
Chúc bạn học tốt !!!
Bạn Việt Nhật chưa xét trường hợp nếu trong ngoặc \(\frac{1}{\sqrt{25-x^2}+5}-\frac{1}{\sqrt{9-x^2}+3}=0\)
MÌnh sẽ đua ra một cách khác:
ĐK: ....
pt <=> \(\sqrt{25-x^2}=2+\sqrt{9-x^2}\) ( hai vế đều dương nên có thể dùng tương đương để bình phương hai vế)
<=> \(25-x^2=4+4\sqrt{9-x^2}+9-x^2\)
<=> \(12=4\sqrt{9-x^2}\)
<=> \(\sqrt{9-x^2}=3\)
<=> \(9-x^2=9\)
<=> \(x^2=0\)
<=> x = 0.
Ta có
\(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=25-x^2-15+x^2=10\)
\(\Rightarrow\sqrt{25-x^2}+\sqrt{15-x^2}=5\)