Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.
Lời giải:
a)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)
\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)
\(\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
b)
\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$
Mặt khác:
Nếu $n=3k+1$:
$2^{2n+2}+24n+14=2^{6k+4}+72k+38$
$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$
Nếu $n=3k$:
$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$
$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$
Nếu $n=3k+2$:
$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$
$\equiv 63+72k\equiv 0\pmod 9$
Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)
Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)
đặt a=1 n + 2 n + 3 n + 4 n
Nếu n=0 ⇒A=4( loại )
Nếu n=1 ⇒A=10( thỏa )
Nếu n>2 .
TH1 : n chẵn ⇒n=2k(k∈N)
⇒A=1+22k+32k+42k
=1+4k+9k+16k
Với k lẻ => k=2m+1
⇒A=1+42m+1+92m+1+162m+1
=1+16m.4+81m.9+256m.16
Dễ CM : A⋮̸5 vì A chia 5 dư 1 .
TH2: n lẻ => n=2h+1
⇒A=1+16h.4+81h.9+256h.16
TT như trên ; ta cũng CM được A không chia hết cho 5
Vậy n=1 thỏa mãn
a) Nếu \(n\)chẵn thì \(n+10\)chẵn nên \(\left(n+10\right)\left(n+15\right)⋮2\).
Nếu \(n\)lẻ thì \(n+15\)chẵn nên \(\left(n+10\right)\left(n+15\right)⋮2\).
b) \(n\left(n+1\right)\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp nên trong 3 số \(n,n+1,n+2\)chắc chắn có ít nhất 1 số chia hết cho \(2\), 1 số chia hết cho \(3\)do đó ta có đpcm.
c) \(n\left(2n+7\right)\left(7n+1\right)=6n.n\left(2n+7\right)+n\left(2n+7\right)\left(n+1\right)\)
\(=6n.n\left(2n+7\right)+2n\left(n+1\right)\left(n+2\right)+3n\left(n+1\right)\)
Ta có: \(6n.n\left(2n+7\right)⋮6,2n\left(n+1\right)\left(n+2\right)⋮6,3n\left(n+1\right)⋮6\)
do đó ta có đpcm.