K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
1
15 tháng 10 2016
Bạn kiểm tra lại đề :)
Đề đúng là \(3^{n+1}+2^{n+1}+3^{n-1}+2^{n-1}\)
\(=\left(3^{n+1}+3^{n-1}\right)+\left(2^{n+1}+2^{n-1}\right)\)
\(=3^{n-1}\left(3^2+1\right)+2^{n-2}\left(2^3+2\right)\)
\(=3^{n-1}.10+2^{n-2}.10\)
\(=10\left(3^{n-1}+2^{n-2}\right)\)chia hết cho 10
CD
0
CY
1
AH
Akai Haruma
Giáo viên
25 tháng 9 2017
Lời giải:
Biến đổi:
\(A=3^{n+1}-2^{n+1}+3^{n-1}-2^{n-1}\)
\(=3^{n-1}(3^2+1)-2^{n-1}(2^2+1)\)
\(=10.3^{n-1}-5.2^{n-1}\)
Ta thấy \(10.3^{n-1}\vdots 10\)
Với mọi \(n\in\mathbb{N}>1\Rightarrow 2^{n-1}\vdots 2\Rightarrow 5.2^{n-1}\vdots 10\)
Do đó \(10.3^{n-1}-5.2^{n-1}\vdots 10\Leftrightarrow A\vdots 10\)
Ta có đpcm.
NT
0
3n+2 - 2n+2 + 3n - 2n
= 3n.(32+1) - 2n(22+1)
= 3n.10 - 2n.5
Có: 3n.10 có tận cùng là 0
Vì 2n chẵn
=> 2n.5 có tận cùng là 0
=> 3n.10 - 2n.5 có tận cùng là 0 => chia hết cho 10
=> 3n+2-2n+2+3n-2n chia hết cho 10 (đpcm)