Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a chia cho 5 dư 1 = a = 5.m + 1 ; b chia 5 dư 2 = b = 5.n+2 ( m,n thuộc N* )
Ta có :
\(a.b=\left(5.m+1\right).\left(5.n+2\right)\)
\(=\left(5.m+1\right).5.n+\left(5m+1\right).2\)
\(=25.m.n+5.n+10.m\)chia cho 5 dư 2
Vậy a.b chia cho 5 dư 2
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
a chia 5 dư 2=>a=5q+2
b chia 5 dư 3=>b=5k+3
=>ab=(5q+2)(5k+3)=(5q+2)5+(5q+2)3
=(5q+2)5+5.3q+6 chia 5 dư 1
Vậy ab chia 5 dư 1
Ta có a = 3. q + 1 (q là số tự nhiên)
b = 3 . p + 2 (p là số tự nhiên)
a.b = (3q + 1)(3p + 2)
= 9qp + 6q + 3p + 2
Tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó Tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.
Câu hỏi của Dung Tr - Toán lớp 6 - Học toán với OnlineMath
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
Gọi số cần tìm là a ta có :
a : 5 dư 4 => a = 5k + 4 (với k \(\in N\))
=> a2 = (5k + 4) (5k + 4) (với k \(\in N\))
=> a2 = 5k (5k + 4) + 4(5k +4)
=> a2 = (5k + 4) . 5k + 5.4k + 3.5 + 1 chia 5 dư 1
=> ĐPCM
\(a:5\) dư 4 \(\Rightarrow a=5k+4\)
\(\Rightarrow a^2=\left(5k+4\right)\left(5k+4\right)\)
\(\Rightarrow\) \(a^2=(5k+4)5k+4(5k+4)\)
\(\Rightarrow\) \(a^2 =(5k+4)5k+5.4k+3.5+1 : 5\) dư 1
\(\RightarrowĐPCM\)
2
gà <4