K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Đặt \(t=z^2\), ta có phương trình \(t^2+at+1=0 \qquad (1)\)

\(\Delta =a^2-4\)

PT đã cho có 4 nghiệm \(\Leftrightarrow\) (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta\ne 0\Leftrightarrow a\ne \pm2\)

Khi đó (1) có nghiệm \(t=\dfrac{-a\pm \sqrt{a^2-4}}{2}\).

Không mất tính tổng quát, ta có thể giả sử: \(z_1=z_3;z_2=z_4\)

Khi đó ta có:

\([(z_1^2+4)(z_2^2+4)]^2=441\\ \Leftrightarrow \left(\dfrac{-a+\sqrt{a^2-4}}{2}+4\right)\left(\dfrac{-a-\sqrt{a^2-4}}{2}+4\right)=441\)

\(\Leftrightarrow (-a+8)^2-(a^2-4)=4.441\\ \Leftrightarrow -16a+68=1764\\ \Leftrightarrow a=-106\)

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài của bạn có những vấn đề sau:

1. PT ban đầu có 4 nghiệm khi mà $(1)$ có 2 nghiệm dương phân biệt. Điều này xảy ra khi $\Delta=a^2-4>0$ và $t_1+t_2=-a>0$ và $t_1t_2=1>0$

$\Leftrightarrow a< -2$

2. Ta có thể giả sử $z_1^2=z_3^2; z_2^2=z_4^2$ chứ không phải $z_1=z_3; z_2=z_4$ bạn nhé.