Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2+y2+2xy-4x-2y+1=0
⇔(x2+y2+2xy-2x-2y+1)-2x=0
⇔(x+y-1)2=2x
Mà (x+y-1)2 là số chính phương
⇒2x là số chính phương
⇒2x chia 4 dư 0 hoặc 1
Mà 2x là số chẵn
⇒2x chia hết cho 4
⇒x chia hết cho 2
⇒x là số chẵn(đpcm)
Lại có:(x+y-1)2=2x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\)=x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\). \(\dfrac{1}{2}\) =x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2
⇒(\(\dfrac{x+y-1}{2}\))2=x:2
Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương
⇒x:2 là số chính phương (đpcm)
Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\)
\(P=x^2+y^2+2xy-2x+2y+1\)
+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:
\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\),
suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.
+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)
Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)
Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.
Vậy \(x=y\) (đpcm)
(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)
VÌ: \(x^3+y^3+1-3xy=\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)
Do: \(x^3+y^3+1-3xy\) là 1 số nguyên tố
=> \(\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\) là 1 số nguyên tố.
Do: \(x+y+1>1\left(x,y\inℕ^∗\right)\)
=> \(x^2+y^2-xy-x-y+1=1\)
<=> \(2x^2+2y^2-2xy-2x-2y+2=2\)
<=> \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
Do: \(\left(x-y\right)^2;\left(x-1\right)^2;\left(y-1\right)^2\) đều là các số chính phương.
=> Ta xét 3 trường hợp sau:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\) ; \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{cases}}\) ; \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{cases}}\)
Do: x; y thuộc N*
=> vs TH1 được: \(x=y=2\)
THỬ LẠI THÌ: \(x^3+y^3+1-3xy=8+8+1-12=5\) (CHỌN)
TH2; TH3 tương tự ra \(x=1;y=2\) và \(x=2;y=1\)
THỬ LẠI \(\orbr{\begin{cases}x^3+y^3+1-3xy=1^3+2^3+1-3.1.2=4\\x^3+y^3+1-3xy=2^3+1^3+1-3.2.1=4\end{cases}}\) (ĐỀU LOẠI HẾT).
VẬY \(x=y=2\) là nghiệm duy nhất.