Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}=1-\frac{5}{m+2}\)
\(\text{Để y là số âm }\)
\(\Rightarrow\frac{5}{m+2}\text{ là số dương}\)
\(\Rightarrow m+2\text{ là số dương}\)
\(\Rightarrow m+2>0\text{ }\)
\(\Rightarrow m>-2\)
ta có: \(y=\frac{m+3}{m+2}=\frac{m+2+1}{m+2}=1+\frac{1}{m+2}\)
Để y là số dương
=> 1/m+2 là số dương
=> m +2 là số dương
\(\Rightarrow m+2>0\)
=> m > - 2
( số dương: VD: 1/2;2/3;...)
Để y dương thì xảy ra 2 trường hợp :
TH1 : m - 3 và m + 2 cùng lớn hơn 0
\(\Rightarrow\hept{\begin{cases}m-3>0\\m+2>0\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m>-2\end{cases}\Rightarrow}m>3}\)
TH2 : m - 3 và m + 2 cùng bé hơn 0
\(\Rightarrow\hept{\begin{cases}m-3< 0\\m+2< 0\end{cases}\Rightarrow\hept{\begin{cases}m< 3\\m< -2\end{cases}\Rightarrow}m< -2}\)
Vậy,...........
\(\Rightarrow\)m -3 \(⋮\)m+ 2
m + 2 - 5\(⋮\)m+ 2
m + 2 \(⋮\)m+2
5\(⋮\)m+2
\(\Rightarrow\)Ư (m + 2) = (1, -1, 5, -5)
m+2 =1 m + 2 =-1 m + 2=5 m+ 2 =-5
m=-1 (loại) m= -3 (loại) m=3 m=-7 (loại)
Vậy m= 5 thì y dương.
Đề bài có cho thiếu điều kiện của m là số nguyên không bạn? Tại vì cách này chỉ áp dụng được với \(m\in Z\).
Ta có:
\(y\in Z\Leftrightarrow\dfrac{m}{m+79}\in Z\)
\(\Leftrightarrow\dfrac{m+79-79}{m+79}\in Z\)
\(\Leftrightarrow\dfrac{79}{m+79}\in Z\)
\(\Leftrightarrow m+79\inƯ\left(79\right)=\left\{-79;-1;1;79\right\}\)
\(\Leftrightarrow m\in\left\{-158;-80;-78;0\right\}\)
Vậy \(m\in\left\{-158;-80;-78;0\right\}\)
\(y=\frac{m-3}{m+2}=\frac{\left(m+2\right)-5}{m+2}=1-\frac{5}{m+2}\)
Vậy để y là số nguyên thì \(m+2\inƯ\left(5\right)\)
Mà Ư(5)={1;-1;5;-5}
=>m+2={1;-1;5;-5}
+) m+2=1 <=> m=-1
+)m+2=-1 <=> m=-3
+)m+2=5 <=> m=3
+) m+2 =-5 <=> m=-7
Vậy m={-7;-3;1;3}
để \(y=\frac{m-3}{m+2}\) là số nguyên thì m-3 chia hết cho m+2
ta có:(m-3)-(m+2) chia hết cho m+2
-1 chia hết cho m+2
mk nói cho bạn bt, chúng ta đều tiến hóa từ lợn đó.Bạn nói mk là lợn tức bạn cũng là lợn.Chỉ là mk làm đc rồi nhưng ko chắc chắn nên mới vào đây hỏi thôi. mk khuyên bạn nếu bt thì trả lời còn ko thì đừng viết lung tung.
Ta có: \(y=\frac{m}{m+79}=\frac{m+79-79}{m+79}=\frac{m+79}{m+79}-\frac{79}{m+79}=1-\frac{79}{m+79}\)
Để y nguyên thì \(1-\frac{79}{m+79}\in Z\Leftrightarrow\frac{79}{m+79}\in Z\Rightarrow m+79\inƯ\left(79\right)\)
Ta có bảng sau:
m+79 | -1 | 1 | 79 | -79 |
m | -80 | -78 | 0 | -158 |
Vậy \(m\in\left\{-158;-80;-78;0\right\}\)
Đối vớ bài dạng này em cần tìm cách tách trên tử để rút gọn ra phân thức cuối cùng chỉ chứa hằng số trên tử. Chúc em học tốt :)
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}\)
\(=\frac{m+2}{m+2}-\frac{5}{m+2}\)
\(=1-\frac{5}{m+2}\)
Để y dương thì :
\(1-\frac{5}{m+2}>0\)
\(\Leftrightarrow\frac{5}{m+2}< 1\)
TH1 :
\(m+2< 0\Rightarrow\frac{5}{m+2}< 0< 1\)
\(\Rightarrow m< -2\)
TH2
\(m+2>0:y>0\Leftrightarrow\frac{5}{m+2}< 1\)
\(\Leftrightarrow m+2>5\)
\(\Leftrightarrow m>3\)
Vậy ...