Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}\)
\(=\frac{m+2}{m+2}-\frac{5}{m+2}\)
\(=1-\frac{5}{m+2}\)
Để y dương thì :
\(1-\frac{5}{m+2}>0\)
\(\Leftrightarrow\frac{5}{m+2}< 1\)
TH1 :
\(m+2< 0\Rightarrow\frac{5}{m+2}< 0< 1\)
\(\Rightarrow m< -2\)
TH2
\(m+2>0:y>0\Leftrightarrow\frac{5}{m+2}< 1\)
\(\Leftrightarrow m+2>5\)
\(\Leftrightarrow m>3\)
Vậy ...
\(y=\frac{m-3}{m+2}=\frac{\left(m+2\right)-5}{m+2}=1-\frac{5}{m+2}\)
Vậy để y là số nguyên thì \(m+2\inƯ\left(5\right)\)
Mà Ư(5)={1;-1;5;-5}
=>m+2={1;-1;5;-5}
+) m+2=1 <=> m=-1
+)m+2=-1 <=> m=-3
+)m+2=5 <=> m=3
+) m+2 =-5 <=> m=-7
Vậy m={-7;-3;1;3}
để \(y=\frac{m-3}{m+2}\) là số nguyên thì m-3 chia hết cho m+2
ta có:(m-3)-(m+2) chia hết cho m+2
-1 chia hết cho m+2
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}=1-\frac{5}{m+2}\)
\(\text{Để y là số âm }\)
\(\Rightarrow\frac{5}{m+2}\text{ là số dương}\)
\(\Rightarrow m+2\text{ là số dương}\)
\(\Rightarrow m+2>0\text{ }\)
\(\Rightarrow m>-2\)
a)Để y là số hữu tỉ dương thì 2a-1<0⇔2a<1\(\Leftrightarrow a< \dfrac{1}{2}\)
b)Để y là số hữu tỉ âm thì 2a-1>0⇔2a>1\(\Leftrightarrow a>\dfrac{1}{2}\)
c)Để y không phải là số hữu tỉ dương cũng không phải số hữu tỉ âm thì y=0 hay 2a-1=0⇔2a=1\(\Leftrightarrow a=\dfrac{1}{2}\)
Để y dương thì xảy ra 2 trường hợp :
TH1 : m - 3 và m + 2 cùng lớn hơn 0
\(\Rightarrow\hept{\begin{cases}m-3>0\\m+2>0\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m>-2\end{cases}\Rightarrow}m>3}\)
TH2 : m - 3 và m + 2 cùng bé hơn 0
\(\Rightarrow\hept{\begin{cases}m-3< 0\\m+2< 0\end{cases}\Rightarrow\hept{\begin{cases}m< 3\\m< -2\end{cases}\Rightarrow}m< -2}\)
Vậy,...........
Đề bài có cho thiếu điều kiện của m là số nguyên không bạn? Tại vì cách này chỉ áp dụng được với \(m\in Z\).
Ta có:
\(y\in Z\Leftrightarrow\dfrac{m}{m+79}\in Z\)
\(\Leftrightarrow\dfrac{m+79-79}{m+79}\in Z\)
\(\Leftrightarrow\dfrac{79}{m+79}\in Z\)
\(\Leftrightarrow m+79\inƯ\left(79\right)=\left\{-79;-1;1;79\right\}\)
\(\Leftrightarrow m\in\left\{-158;-80;-78;0\right\}\)
Vậy \(m\in\left\{-158;-80;-78;0\right\}\)
Bài 1:
a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu
Mà -2017 là âm
=> 2m - 8 cũng là âm
=> 2m < 8
=> m < 4
Vậy với m < 4 thì x là số hữa tỉ dương
b) Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác dấu
Mà -2017 là âm
=> 2m - 8 là dương
=> 2m > 8
=> m > 4
Vậy với m > 4 thì x là số hữa tỉ âm
c) Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )
=> 2m - 8 = 0
=> 2m = 8
=> m = 4
Vậy với m = 4 thì x không âm không dương
Bài 2:
Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)
\(\Rightarrow2x+6-4-6⋮x+3\)
\(\Rightarrow\left(2x+6\right)-10⋮x+3\)
\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))
\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên
ta có: \(y=\frac{m+3}{m+2}=\frac{m+2+1}{m+2}=1+\frac{1}{m+2}\)
Để y là số dương
=> 1/m+2 là số dương
=> m +2 là số dương
\(\Rightarrow m+2>0\)
=> m > - 2
( số dương: VD: 1/2;2/3;...)
\(\Rightarrow\)m -3 \(⋮\)m+ 2
m + 2 - 5\(⋮\)m+ 2
m + 2 \(⋮\)m+2
5\(⋮\)m+2
\(\Rightarrow\)Ư (m + 2) = (1, -1, 5, -5)
m+2 =1 m + 2 =-1 m + 2=5 m+ 2 =-5
m=-1 (loại) m= -3 (loại) m=3 m=-7 (loại)
Vậy m= 5 thì y dương.
m = 5 thì y là dương
nha bạn
ok