K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B

4 tháng 11 2021

\(ĐK:n\ne-1\\ M\in Z\Leftrightarrow n+1\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-6;-2;0;5\right\}\)

Vậy không có đáp án nào đúng

Chọn B

4 tháng 11 2021

cảm ơn bạn

 

8 tháng 9 2021

C

8 tháng 9 2021

\(b,c\)\(\left(-\dfrac{25}{5}=-5\in Z\in Q\right)\)

a: Để A là số nguyên thì n-21 chia hết cho n+10

=>n+10-31 chia hết cho n+10

=>n+10 thuộc {1;-1;31;-31}

=>n thuộc {-9;-11;21;-41}

b: Để B là số nguyên thì 3n+9 chia hết cho n-4

=>3n-12+21 chia hết cho n-4

=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}

=>n thuộc {5;3;7;1;11;-3;25;-17}

c: C nguyên

=>6n+5 chia hết cho 2n-1

=>6n-3+8 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}

mà n nguyên

nên 2n-1 thuộc {1;-1}

=>n thuộc {1;0}

Để A là số nguyên thì n-5 thuộc Ư(7)

=>n-5 thuộc {1;-1;7;-7}

=>n thuộc {4;6;12;-2}

Vậy: B={4;6;12;-2}

9 tháng 8 2023

giúp mik câu hỏi mới với

a) \(n\inℕ\left(n\ne-4\right)\)

b) Để M nguyên 

\(\Rightarrow\frac{5}{n+4}\)Cũng nguyên

\(\Leftrightarrow5⋮n+4\)

\(\Leftrightarrow n+4\inƯ\left(5\right)\)

       \(Ư\left(5\right)=\left\{1;5\right\}\)

\(\Leftrightarrow\orbr{\begin{cases}n+4=1\\n+4=5\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-3\\n=1\end{cases}}}\)

Mình làm ko chắc nha ,sai thì thông cảm

4 tháng 7 2021

Xem lại đề có thiếu câu hỏi không nha bạn

4 tháng 7 2021

ui mình viết thiếu

 

13 tháng 9 2023

a) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ \(\Leftrightarrow a-3\ne0\Leftrightarrow a\ne3\)

b)  \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ dương \(\Leftrightarrow a-3< 0\Leftrightarrow a< 3\)

c) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu âm \(\Leftrightarrow a-3>0\Leftrightarrow a>3\)

d) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số nguyên đương 

\(\Leftrightarrow a-3\in B\left(5\right)=\left\{-1;-5\right\}\)

\(\Leftrightarrow a\in\left\{2;-2\right\}\)
21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản