K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Ta được: a=5k=7k+14=9k+36

=> 5k=7k+14

=>5k-7k=14

=>k=-7

4 tháng 3 2017

a chua doc het de so sory ban nha

a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có 

AE chung

\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))

Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)

Suy ra: AC=AK(hai cạnh tương ứng)

1 tháng 3 2021

Xét tam giác vuông ACE và tam giác vuông AKE có : góc ECA = góc EKA = 90 độEA: cạnh huyền chung góc CAE = góc KAE (vì AE là tia phân giác góc A)Suy ra : Tam giác ACE= Tam giác AKE ( CH-GN)

=> AC=AK( hai cạnh tương ứng)ta có: AC=AK (cmt)=> A nằm trên đường trung trực của KC   (1)AK=EC( tam giác AKE=tam giác ACE)=> E nằm trên đường trung trực của KC   (2)

từ (1) và (2) suy ra AE là đường trung trực của KCvậy AE vuông góc với CKb) Ta có : trong tam giác vuông BCA: góc B + góc A = 90 độ

=> góc B = 90 độ - góc A= 90 độ - 60 độ = 30 độ Mà góc EAB = 30 độ Suy ra Tam giác EBA cân tại E

Mặt khác : EK vuông góc với AB

Nên EK  cũng là đường trung trực của tam giác AEB=>BK=AKc) Trong tam giác vuông  BEK ta có :  EB > BK Mà BK=KA ; KA=AC=> BK=AC Hay EB>ACd) Ta có : ba đường cao BD;EK;CA luôn đồng quy tại một điểm theo tính chấtnên ba đường thẳng AC;BD;KE cùng đi qua 1 điểm

a: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có

AB=AC

AK chung

=>ΔAKB=ΔAKC

b: Xet ΔCAD có

CK vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

=>CA=CD
c: Xét ΔABC có

K là trung điểm của CB

KM//AC

=>M là trung điểm của AB

a: XétΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

=>EC=EK

=>E nằm trên đường trung trực của CK(1)

Ta có: ΔACE=ΔAKE

=>AC=AK

=>A nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AE là đường trung trực của CK

=>AE\(\perp\)CK

b: Ta có: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=90^0-60^0=30^0\)

Ta có: AE là phân giác của góc CAB

=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

Ta có: ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

c: Ta có: EB=EA

EA>AC(ΔAEC vuông tại C)

Do đó: EB>AC

d: Gọi giao điểm của BD và AC là H

Xét ΔHAB có

AD,BC là các đường cao

AD cắt BC tại E

Do đó: E là trực tâm của ΔHAB

=>HE\(\perp\)AB

mà EK\(\perp\)AB

và HE,EK có điểm chung là E

nên H,E,K thẳng hàng

=>AC,BD,KE đồng quy tại H

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

Lời giải:
$A=0,1+0,0(2453)=\frac{1}{10}+\frac{2453}{99990}=\frac{566}{4545}$ (đây đã là dạng tối giản)

Vậy số nguyên k nguyên dương nhỏ nhất để $kA$ nguyên là $4545$