\(\frac{1}{11}\)+\(\frac{1}{12}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Ta có : các phân số từ 1/11 ; 1/12  đến  1/19 đều lớn hơn phân số 1/20

Từ đó lại có : 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20 + 1/20 + 1/20+ ...+ 1/20 (  số số hạng gồm 10 phân số 1/20)

=> 1/11+ 1/12+ 1/13+...+ 1/20 > 10/20

=>  1/11+1/12+1/13+...+1/20  > 1/2

<=>    S   > 1/2 .

27 tháng 2 2018

Ta có : 

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 số \(\frac{1}{20}\) )

\(S>\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

8 tháng 3 2017

S lớn hơn 

                        k mình mình k lại

15 tháng 3 2017

Ta có:

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)

\(...............\)

\(\frac{1}{19}>\frac{1}{20}\)

\(\frac{1}{20}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )

\(\Rightarrow S>\frac{1}{2}\)

Vậy: \(S>\frac{1}{2}\)

14 tháng 3 2017

S>1/2

14 tháng 3 2017

tổng trên bằng 0,609947873 và lớn hơn 1/2 đó bn 

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

21 tháng 2 2017

Ta có:

\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

Vậy S > \(\frac{1}{2}\)

21 tháng 2 2017

1/2 lớn hơn S, xin lỗi tớ không biết cách viết phân số

23 tháng 6 2017

1.

\(3^{500}=\left(3^5\right)^{100}\)

\(7^{300}=\left(7^3\right)^{100}\)

\(3^5< 7^3\Leftrightarrow3^{500}< 7^{300}\)

2 tháng 10 2017

\(3^{500}=\left(3^5\right)^{100}\)

\(7^{300}=\left(7^3\right)^{100}\)

35 < 73 => 3500 <7300

6 tháng 5 2018

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)

\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)

\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)

\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)

\(A< \frac{1}{2}\)