\(\frac{1}{10}\)+ \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)

\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)

\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)

\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)

\(A< \frac{1}{2}\)

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

27 tháng 2 2018

Ta có : các phân số từ 1/11 ; 1/12  đến  1/19 đều lớn hơn phân số 1/20

Từ đó lại có : 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20 + 1/20 + 1/20+ ...+ 1/20 (  số số hạng gồm 10 phân số 1/20)

=> 1/11+ 1/12+ 1/13+...+ 1/20 > 10/20

=>  1/11+1/12+1/13+...+1/20  > 1/2

<=>    S   > 1/2 .

27 tháng 2 2018

Ta có : 

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 số \(\frac{1}{20}\) )

\(S>\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

15 tháng 3 2017

Ta có:

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)

\(...............\)

\(\frac{1}{19}>\frac{1}{20}\)

\(\frac{1}{20}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )

\(\Rightarrow S>\frac{1}{2}\)

Vậy: \(S>\frac{1}{2}\)

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

14 tháng 3 2017

S>1/2

14 tháng 3 2017

tổng trên bằng 0,609947873 và lớn hơn 1/2 đó bn 

3 tháng 4 2016

A><=1

k mình nha

13 tháng 3 2018

B2 28/41 , 29/41 , 29/40

mik chỉ biết làm câu 2 thôi 

k giùm mik nha

8 tháng 3 2022

TL :

Ko biết thì đừng làm

Nhớ làm hết , chi tiết mới đc 1 SP

HT

8 tháng 3 2022

rep dẹp hết

10 tháng 3 2019

số số hạng của dãy trên là:(40-11):1+1=30

Vì:\(\frac{1}{11}=\frac{1}{11},..........,\frac{1}{40}< \frac{1}{11}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{11}.30=\frac{30}{11}< 1\)

\(\Rightarrow\frac{1}{11}+.....+\frac{1}{40}< 1\)

Vậy,A<1.

TICK HỘ TUI CÁI!!!!!!

10 tháng 3 2019

thanks