K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 4 2023
Gọi \(S=\left\{\overline{abc}\right\}\)
a có 5 cách chọn
b có 5 cách chọn
c có 4 cách chọn
=>S có 5*5*4=100 số
Gọi \(\overline{abc}\) là số chia hết cho 5
TH1: c=5
=>a có 4 cách và b có 4 cách
=>Có 16 cách
TH2: c=0
=>a có 5 cách và b có 4 cách
=>Có 5+4=20 cách
=>Có 16+20=36(cách)
\(n\left(\Omega\right)=C^2_{100}\)
\(n\left(B\right)=C^2_{36}\)
=>\(P\left(B\right)=\dfrac{7}{55}\)
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 4 2023
Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2004}\\ =2\left(1+3+3^2+...+3^{2004}\right)\\ =3\left(1+3+3^2+...+3^{2004}\right)-\left(1+3+3^2+...+3^{2004}\right)\\ =\left(3+3^2+3^3+...+3^{2005}\right)-\left(1+3+3^2+...+3^{2004}\right)\\ =3^{2005}-1\)
\(3\equiv3\left(\text{mod }10\right)\\ 3^4\equiv1\left(\text{mod }10\right)\\3^{2004}= 3^{4^{501}}\equiv1^{501}\equiv1\left(\text{mod }10\right)\\ 3^{2005}=3\cdot3^{2004}\equiv3\cdot1\equiv3\left(\text{mod }10\right)\\ 3^{2005}-1\equiv3-1\equiv2\left(\text{mod }10\right)\)
Vì S tận cùng là 2 nên nó k phải là số chính phương