K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dots+\dfrac{1}{2024^2}\)

+, Ta thấy:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(...\)

\(\dfrac{1}{2024^2}< \dfrac{1}{2023.2024}\)

Suy ra: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2024^2}\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dots+\dfrac{1}{2023.2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dots+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}< 1\)

\(\Rightarrow S< 1\) (1)

+, Lại có: \(\dfrac{1}{2^2}>0\)

\(\dfrac{1}{3^2}>0\)

\(\dfrac{1}{4^2}>0\)

\(...\)

\(\dfrac{1}{2024^2}>0\)

Suy ra: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2024^2}>0\)

\(\Rightarrow S>0\) (2)

Từ (1) và (2) \(\Rightarrow0< S< 1\)

\(\Rightarrow\) S không phải là số tự nhiên

$Toru$