K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Cho S = 1-3+32-33+34-35+...+398-399

=> 3S=3-3^2+3^3=3^4+3^5-3^6+...+3^99-3^100

Cộng lại => 4S=1-3^100

=> S=(1-3^100)/4

Có 3^100=(3^2)^50

3^2 chia 4 dư 1 => (3^2)^50 cũng chia 4 dư 1

=> 3^100 chia 4 dư 1.

Xong r nhé bạn

12 tháng 11 2019

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(\Leftrightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(\Leftrightarrow3S+S=\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)

\(\Leftrightarrow4S=1-3^{100}\)

\(\Leftrightarrow S=\frac{1-3^{100}}{4}\)

Ta có :

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)chia 4 dư 1

\(\Rightarrow3^{100}\)chia 4 dư 1 ( ĐPCM)

17 tháng 11 2019

Ta có : S = 1 - 3 + 3- 3+ 3- 3+...+ 398 - 399 

      => 3S = 3 - 32 + 3- 3+ 3- 3+...+ 399 - 3100 

Lấy 3S + S = (3 - 32 + 3- 3+ 3- 3+...+ 399 - 3100 ) + ( 1 - 3 + 3- 3+ 3- 3+...+ 398 - 399 )

          4S    = 3100 + 1

=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên) 

=> 3100 : 4 dư 1 

16 tháng 6 2015

a)S=1-3+32+...+398-399

=-2+32(1-3)+...+398(1-3)

=-2-2.32-2.34-...-2.398

=-2(1+32+34+...+398)

=-2[(1+32+34)+(36+38+310)+...+(394+396+398)]

=-2[100+36.100+...+394.100]

=-200(1+36+...394)

Do -200 là bội của -20 =>-200(1+36+...394) là bội của -20

=>S là bội của -20(ĐPCM)

b)S=1-3+32+...+398-399

=-2+32(1-3)+...+398(1-3)

=-2-2.32-2.34-...-2.398

=-2(1+32+34+...+398)

=>32S=9S=-2(32+34+36+...+3100)

=>9S-S=-2(32+34+36+...+3100)+2(1+32+34+...+398)

=>8S=-2(3100-1)

=>S=\(\frac{-2\left(3^{100}-1\right)}{-8}\)=\(\frac{3^{100}-1}{-4}\)

Do S chia hết cho -20 => S chia hết cho -4

=>(3100-1):(-4)=(3100-1).\(\frac{1}{-4}\) chia hết cho (-4)

Do \(\frac{1}{-4}\) không chia hết =>3100-1 chia hết cho -4 =>3100-1 chia hết cho 4

=>3100 chia 4 dư 1(ĐPCM)

a.S=1-3+32-33+...+398-399

=(1-3+32-33)+...+(396-397+398-399)

=(-20)+...+396.(1-3+32-33)

=(1+...+396).(-20) chia hết cho -20

=>đpcm

b.S=1-3+32-33+...+398-399

=>3S=3-32+33-34+...+399-3100

=>3S+S=(3-32+33-34+...+399-3100)+(1-3+32-33+...+398-399)

=>4S=1-3100

\(\Rightarrow S=\frac{1-3^{100}}{4}\)

 S chia hết cho 4 =>1-3100 chia hết cho 4

1 chia 4 dư 1 =>3100 chia 4 dư 1

=>đpcm 

 

4 tháng 1 2024

Hồng biết