Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
`#3107.101107`
\(A = 1 + 3 + 3^2 + 3^3 + ... + 3^{98} + 3^{99}\)
\(A = (1 + 3) + (3^2 + 3^3) + ... + (3^{98} + 3^{99})\)
\(A = (1 + 3) + 3^2(1 + 3) + ... + 3^{98}(1 + 3)\)
\(A = (1 + 3)(1 + 3^2 + ... + 3^{98})\)
\(A = 4(1 + 3^2 + ... + 3^{98})\)
Vì \(4(1 + 3^2 + ... + 3^{98}) \) \(\vdots\) \(4\)
`\Rightarrow A \vdots 4`
Vậy, `A \vdots 4` (đpcm).
A = 1 + 3 + 32 + 33 + ... + 398 + 399
A = (1 + 3) + (32 + 33) + ... + (398 + 399)
A = 1. (1 + 3) + 32. (1 + 3) + ... + 398. (1 + 3)
A = 1.4 + 32.4 + ... + 398.4
A = 4. (1 + 32 + ... + 398)
⇒ A ⋮ 4
Ta có : S = 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399
=> 3S = 3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100
Lấy 3S + S = (3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100 ) + ( 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399 )
4S = 3100 + 1
=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên)
=> 3100 : 4 dư 1