Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 19.4
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
\(S=1+2+2^2+2^3+...+2^{29}\)
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{27}+2^{28}+2^{29}\right)\)
\(S=7+2^3.\left(1+2+2^2\right)+...+2^{27}.\left(1+2+2^2\right)\)
\(S=7+2^3.7+...+2^{27}.7\)
\(S=7.\left(1+2^3+...+2^{27}\right)\)
Vì \(7⋮7\) nên \(7.\left(1+2^3+...+2^{27}\right)⋮7\)
Vậy \(S⋮7\)
______
\(2^{x+1}+2^x.3=320\)
\(=>2^x.2+2^x.3=320\)
\(=>2^x.\left(2+3\right)=320\)
\(=>2^x.5=320\)
\(=>2^x=320:5\)
\(=>2^x=64=2^6\)
\(=>x=6\)
\(#NqHahh\)
\(#Nulc`\)
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
a) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5) + (5^2 + 5^3) + ... + (5^18 + 5^19) + 5^20
S = (1 + 5) + 5^2.(1 + 5) + ... + 5^18.(1 + 5) + 5^20
S = 6 + 5^2.6 + ... + 5^18.6 + 5^20
S = 6.(1 + 5^2 + ... + 5^18) + 5^20
Mà 6.(1 + 5^2 + ... + 5^18) chia hết cho 6 mà 5^20 có chữ số tận cùng là 5, là số lẻ nên không chia hết 6.
Vậy S không chia hết cho 6
b) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5 + 5^2) + ... + (5^18 + 5^19 + 5^20)
S = (1 + 5 + 5^2) + ... + 5^18.(1 + 5 + 5^2)
S = 31 + ... + 5^18.31
S = 31.(1 + ... + 5^18) chia hết cho 31 => S chia hết cho 31.
2. a) abab : ab = (100ab + ab) : ab = 100ab : ab + ab : ab = 100 + 1 = 101.
b) abcabc : abc = (1000abc + abc) : abc = 1000abc : abc + abc : abc = 1000 + 1 = 1001.
có S=(2+22) +22(2+22)...22012(2+22)
MÀ 2+22=6 nen đưa 2+22 ra làm chung tức là đưa 6 r làm chung
S=2+22(22+24+26+...22012)=6(22+24+26+...22012)
nhân với 6 luôn luôn chia hết cho 6
vậy S có chia hết cho 6
-> S = ( 2+ 22 ) + ( 23+ 24 )+........+ (22013 + 22014 )
-> S = 6+ 23 ( 2+ 22 )+........+ 22013 ( 2+ 22 )
-> S= 6 + 23 .6 +.........+ 22013. 6 chia hết cho 6
-> S chia hết cho 6
Ta thử nhóm lần lượt :
\(S=\left(2+2^2\right)+2^2\left(2+2^2\right)+.....+2^{1998}\left(2+2^2\right)\)
\(=\left(2+2^2\right)\left(1+2^2+.....+2^{1998}\right)\)
\(=6\left(1+2^2+.....+2^{1998}\right)\)chia hết cho 6
Ta thấy không thể nhóm để S chia hết cho 7 vì 2 là số chẵn
S ko chia hết cho 6, ko chia hết cho 7. nếu muốn mk giải thì kb với mk và k cho mk nhé, còn ko mún thì thui. LƯỚT