Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi A(x):
\(A\left(x\right)=\frac{x+1999-1999}{\left(x+1999\right)^2}=\frac{x+1999}{\left(x+1999\right)^2}-\frac{1999}{\left(x+1999\right)^2}=\frac{1}{x+1999}-\frac{1999}{\left(x+1999\right)^2}\)
\(=\frac{1}{x+1999}-1999.\frac{1}{\left(x+1999\right)^2}=\frac{1}{x+1999}-1999.\left(\frac{1}{x+1999}\right)^2\)
Đặt \(\frac{1}{x+1999}=t\left(1\right)\)
PT \(\Leftrightarrow t-1999t^2=-1999t^2+t=-\left(1999t^2-t\right)=-\left[1999.\left(t^2-\frac{1}{1999}.t\right)\right]\)
\(=-\left[1999.\left(t^2-2.t.\frac{1}{3998}+\left(\frac{1}{3998}\right)^2-\left(\frac{1}{3998}\right)^2\right)\right]=....\) (tự biến đổi)
\(=-1999\left(t-\frac{1}{3998}\right)^2+\frac{1}{7996}=\frac{1}{7996}-1999\left(t-\frac{1}{3998}\right)^2\le\frac{1}{7996}\)
=>GTLN của \(t-1999t^2=\frac{1}{7996}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{3998}\)
Thay t vào (1) ta đc: \(\frac{1}{x+1999}=\frac{1}{3998}\Rightarrow x=1999\)
Vậy..................
a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)
Vậy Min = 6 <=> x = - 3
Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo
Vậy f(x) không có giá trị lớn nhất .
Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)
Có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)
\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0
x+3 = 0
x=-3
Vậy GTNN của f(x) là 6 khi x=-3
Chúc bạn học tốt!
a) Xét mẫu thức : \(x^3-3x-18=\left(x-3\right)\left(x^2+3x+6\right)\)
\(M=\frac{x-3}{x^3-3x-18}=\frac{x-3}{\left(x-3\right)\left(x^2+3x+6\right)}=\frac{1}{x^2+3x+6}=\frac{1}{\left(x+\frac{3}{2}\right)^2+\frac{15}{4}}\le\frac{4}{15}\)
Dấu "=" xảy ra <=> x = -3/2
Vậy Max M = 4/15 tại x = -3/2
b) \(N=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\). Đặt \(y=x+1\)\(\Rightarrow x=y-1\)
Suy ra \(N=\frac{\left(y-1\right)^2+\left(y-1\right)+1}{y^2}=\frac{y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+1\)
Lại đặt \(t=\frac{1}{y}\), \(N=t^2-t+1=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{2}\Leftrightarrow y=2\Leftrightarrow x=1\)
Vậy Min N = 3/4 tại x = 1
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
\(Q=\left(x-1\right)^2-2\left(x+3\right)^2=x^2-2x+1-2x^2-12x-18=-x^2-14x-17\)
\(Q=32-\left(x^2+14x+49\right)=32-\left(x+7\right)^2\)
Ta thấy (x+7)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là =0
Mà Q lớn nhất khi (x+7)2 nhỏ nhất
Vậy Q lớn nhất = 32-0 = 32 khi và chỉ khi (x+7)2 = 0 => x = -7