K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

\(x^4-2x^2-3m+5=0\left(1\right)\)

a) Thay \(m=7\) vào pt (1), ta được:

\(x^4-2x^2-3.7+5=0\)

\(\Leftrightarrow\) \(x^4-2x^2-21+5=0\)

\(\Leftrightarrow\) \(x^4-2x^2-16=0\)

Đặt \(x^2=t\) , ĐK: \(t\ge0\) , ta được:

\(t^2-2t-16=0\)

(\(a=1\) ; \(b=-2\) ; \(c=-16\) )

Ta có: \(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-16\right)=68>0\)

\(\Rightarrow\) \(\sqrt{\Delta}=\sqrt{68}=2\sqrt{17}\)

\(\Rightarrow\) \(t_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+2\sqrt{17}}{2.1}=1+\sqrt{17}\) (TMĐK)

\(\Rightarrow\) \(t_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-2\sqrt{17}}{2.1}=1-\sqrt{17}\) (loại vì \(1-\sqrt{17}< 0\), với mọi t )

Với \(t=t_1=1+\sqrt{17}\) , ta có: \(x^2=1+\sqrt{17}\) \(\Rightarrow\) \(x=\pm\sqrt{1+\sqrt{17}}\) \(\Rightarrow\) \(x_1=\sqrt{1+\sqrt{17}}\) , \(x_2=-\sqrt{1+\sqrt{17}}\)

b) Cho VP pt (1) \(=0\) , tìm được m

c) Như câu a) (chỉ cần đổi dấu của nghiệm \(t_2\) thôi)

NOTE: Tức là từ phần giải ra nghiệm \(t_2\) rồi giải tiếp

---- END----

15 tháng 3 2018

Like mink nha (chỗ nào ko hiểu cứ hỏi ^_^ )

A) delta=(4m-2)^2-4×4m^2

=16m^2-8m+4-16m^2

=-8m+4

để pt có hai nghiệm pb thì -8m+4>0

Hay m<1/2

B để ptvn thì -8m+4<0

hay m>1/2

3 tháng 5 2023

a, Th1 : \(m-1=0\Rightarrow m=1\)

\(\Rightarrow-x+3=0\\ \Rightarrow x=3\)

Th2 : \(m\ne1\)

\(\Delta=\left(-1\right)^2-4.\left(m-1\right).3\\ =1-12m+12\\=13-12m \)

phương trình có nghiệm \(\Delta\ge0\)

\(\Rightarrow13-12m\ge0\\ \Rightarrow m\le\dfrac{13}{12}\)

b, Áp dụng hệ thức vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{m-1}\\x_1x_1=\dfrac{3}{m-1}\end{matrix}\right.\)

Tổng bình phương hai nghiệm bằng 12 \(\Rightarrow x^2_1+x^2_2=12\)

\(\left(x_1+x_2\right)^2-2x_1x_2=12\\ \Leftrightarrow\left(\dfrac{1}{m-1}\right)^2-2.\left(\dfrac{3}{m-1}\right)=12\\ \Leftrightarrow\dfrac{1}{\left(m-1\right)^2}-\dfrac{6}{m-1}=12\\ \Leftrightarrow1-6\left(m-1\right)=12\left(m-1\right)^2\\ \Leftrightarrow1-6m+6=12\left(m^2-2m+1\right)\\ \Leftrightarrow7-6m-12m^2+24m-12=0\\ \Leftrightarrow-12m^2+18m-5=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9-\sqrt{21}}{12}\\m=\dfrac{9+\sqrt{21}}{12}\end{matrix}\right.\Rightarrow m=\dfrac{9+\sqrt{21}}{12}\)

NV
21 tháng 4 2023

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

NV
21 tháng 4 2023

À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa

19 tháng 3 2023

Giúp vs m.n ơi mai mình kt òi

19 tháng 3 2023

a) Với m=0

=> pt <=> \(x^2+5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

b) \(x^2+5x+3m=0\)

\(\Delta=25-12m\)

Để phương trình có 2 nghiệm phân biệt 

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow25-12m>0\)

\(\Leftrightarrow m< \dfrac{25}{12}\)

9 tháng 11 2021

\(a,\Leftrightarrow\Delta=\left(-2\right)^2-4\left(2m-1\right)\ge0\\ \Leftrightarrow4-8m+4\ge0\\ \Leftrightarrow8-8m\ge0\Leftrightarrow m\le1\\ b,\Leftrightarrow\Delta=8-8m>0\Leftrightarrow m< 1\\ c,\Leftrightarrow\Delta=8-8m=0\Leftrightarrow m=1\\ d,\Leftrightarrow\Delta=8-8m< 0\Leftrightarrow m>1\)

10 tháng 5 2018

mấy câu kia dễ rồi. ưu tiên làm câu khó 

B2 b)  x^2 +4mx +4m -1 =0

có  đen ta phẩy = ( 2 m ) ^2 -4m +1 =4m^2 -4m +1 = ( 2m -1 ) ^2 > 0 với mọi x khác 1/2

NV
16 tháng 1

- Với \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)

- Với \(m\ne\dfrac{5}{2}\) ta có:

\(a+b+c=2m-5-2\left(m-1\right)+3=0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2m-5}\end{matrix}\right.\)

Do 1 là số nguyên dương nên để pt có 2 nghiệm pb đều nguyên dương thì:

\(\left\{{}\begin{matrix}\dfrac{3}{2m-5}\ne1\\\dfrac{3}{2m-5}\in Z^+\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne4\\2m-5=Ư\left(3\right)=\left\{1;3\right\}\end{matrix}\right.\) (do nghiệm nguyên dương và 3 dương nên ta chỉ cần xét các ước dương của 3)

\(\Rightarrow\left\{{}\begin{matrix}m\ne4\\m=\left\{3;4\right\}\end{matrix}\right.\) 

\(\Rightarrow m=3\)

NV
16 tháng 1

Đề là "hai nghiệm dương" hay "hai nghiệm nguyên dương" vậy em?