Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Khi m=1 thì (1) sẽ là x^2+1=0
=>x thuộc rỗng
b: Thay x=1 vào (1),ta được:
1^2-2(m-1)+m^2=0
=>m^2+1-2m+2=0
=>m^2-2m+3=0
=>PTVN
c: Thay x=-3 vào pt, ta được:
(-3)^2-2*(m-1)*(-3)+m^2=0
=>m^2+9+6(m-1)=0
=>m^2+6m+3=0
=>\(m=-3\pm\sqrt{6}\)
a. Phương trình có 2 nghiệm phân biệt khi:
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)
\(\Rightarrow m< \dfrac{5}{4}\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow x_1-3x_2=5-4m\)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-1\)
\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)
Để PT có nghiệm bằng \(-1\), thay \(x=-1\) ta có:
\(\left(-1\right)^2-\left(2m-3\right)\left(-1\right)+m^2=0\\ \Leftrightarrow1+2m-3+m^2=0\\ \Leftrightarrow m^2+2m-2=0\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\\m=-1-\sqrt{3}\end{matrix}\right.\)
Với \(m=-1+\sqrt{3}\Rightarrow x_1x_2=m^2=4-2\sqrt{3}\Rightarrow x_2=-4+2\sqrt{3}\)
Với \(m=-1-\sqrt{3}\Rightarrow x_1x_2=m^2=4+2\sqrt{3}\Rightarrow x_2=-4-2\sqrt{3}\)
Để pt đã cho có nghiệm bằng -1 thì \(1-\left[-\left(2m-3\right)\right]+m^2=0\)\(\Leftrightarrow1+2m-3+m^2=0\)\(\Leftrightarrow m^2+2m-2=0\)\(\Leftrightarrow\left(m+1\right)^2-\left(\sqrt{3}\right)^2=0\)\(\Leftrightarrow\left(m+1+\sqrt{3}\right)\left(m+1-\sqrt{3}\right)=0\)\(\Leftrightarrow m=-1\pm\sqrt{3}\)
Khi đó nghiệm còn lại bằng \(\dfrac{m^2}{1}=\left(-1\pm\sqrt{3}\right)^2=4\mp2\sqrt{3}\)
Khi \(m=-1+\sqrt{3}\) thì nghiệm còn lại bằng \(4-2\sqrt{3}\)
Khi \(m=-1-\sqrt{3}\) thì nghiệm còn lại bằng \(4+2\sqrt{3}\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
Thay x=1 vào pt, ta được;
\(1-2\left(m-1\right)+2m-5=0\)
=>2m-4-2m+2=0
=>-2=0(vô lý)
\(1,\Leftrightarrow\Delta=64-4\left(2m+6\right)\ge0\\ \Leftrightarrow40-8m\ge0\\ \Leftrightarrow m\le5\\ 2,\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(2m-6\right)>0\\ \Leftrightarrow4m^2-8m+4-8m+24>0\\ \Leftrightarrow2\left(m^2-4m+4\right)+6>0\\ \Leftrightarrow2\left(m-2\right)^2+6>0\left(\text{luôn đúng}\right)\\ \Leftrightarrow m\in R\)
`x=1` là nghiệm pt
`=>1-(2m-1)+m(m-1)=0`
`<=>2-2m+m^2-m=0`
`<=>m^2-3m+2=0`
`<=>` $\left[ \begin{array}{l}m=1\\m=2\end{array} \right.$
`=>`$\left[ \begin{array}{l}m=1\Rightarrow x^2-(2-1)x+1(1-1)=0\\m=2\Rightarrow x^2-(4-1)x+2(2-1)=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x^2-x=0\\x^2-3x+2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}$\left[ \begin{array}{l}x=0\\x=1\end{array} \right.$
\\$\left[ \begin{array}{l}x=1\\x=2\end{array} \right.$
\end{array} \right.$
Vậy m=1 thì pt có nghiệm x=1 và nghiệm còn lại là 0
m=2 thì pt có nghiệm x=1 và nghiệm còn lại là 2
`x=1` là nghiệm pt
`=>1-(2m-1)+m(m-1)=0`
`<=>2-2m+m^2-m=0`
`<=>m^2-3m+2=0`
`<=>` $\left[ \begin{array}{l}m=1\\m=2\end{array} \right.$
`=>`$\left[ \begin{array}{l}m=1\Rightarrow x^2-(2-1)x+1(1-1)=0\\m=2\Rightarrow x^2-(4-1)x+2(2-1)=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x^2-x=0\\x^2-3x+2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\\\left[ \begin{array}{l}x=1\\x=2\end{array} \right.\end{array} \right.$
Vậy m=1 thì pt có nghiệm x=1 và nghiệm còn lại là 0
m=2 thì pt có nghiệm x=1 và nghiệm còn lại là 2