Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆' = [-(m - 3)]² - (m² + 3)
= m² - 6m + 9 - m² - 3
= -6m + 6
Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0
⇔ -6m + 6 ≥ 0
⇔ 6m ≤ 6
⇔ m ≤ 1
Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm
b) Theo định lý Viét, ta có:
x₁ + x₂ = 2(m - 3) = 2m - 6
x₁x₂ = m² + 3
Ta có:
(x₁ - x₂)² - 5x₁x₂ = 4
⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4
⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4
⇔ (x₁ + x₂)² - 9x₁x₂ = 4
⇔ (2m - 6)² - 9(m² + 3) = 4
⇔ 4m² - 24m + 36 - 9m² - 27 = 4
⇔ -5m² - 24m + 9 = 4
⇔ 5m² + 24m - 5 = 0
⇔ 5m² + 25m - m - 5 = 0
⇔ (5m² + 25m) - (m + 5) = 0
⇔ 5m(m + 5) - (m + 5) = 0
⇔ (m + 5)(5m - 1) = 0
⇔ m + 5 = 0 hoặc 5m - 1 = 0
*) m + 5 = 0
⇔ m = -5 (nhận)
*) 5m - 1 = 0
⇔ m = 1/5 (nhận)
Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu
a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)
\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)
\(=4m^2-24m+36-4m^2-12=-24m+24\)
Để phương trình có hai nghiệm thì \(\Delta>=0\)
=>-24m+24>=0
=>-24m>=-24
=>m<=1
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-5x_1x_2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)
=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)
=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)
=>\(4m^2-24m+36-9m^2-27-4=0\)
=>\(-5m^2-24m+5=0\)
=>\(-5m^2-25m+m+5=0\)
=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)
=>(m+5)(-5m+1)=0
=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1
a) Thay m=-2 vào phương trình, ta được:
\(x^2-\left(-x\right)-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)
a) Thay m=1 vào phương trình, ta được:
\(x^2-6\cdot x+5=0\)
a=1; b=-6; c=5
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{5}{1}=5\)
b) Ta có: \(x^2-\left(m+5\right)x-m+6=0\)
a=1; b=-m-5; c=-m+6
\(\Delta=b^2-4ac\)
\(=\left(-m-5\right)^2-4\cdot1\cdot\left(-m+6\right)\)
\(=\left(m+5\right)^2-4\left(-m+6\right)\)
\(=m^2+10m+25+4m-24\)
\(=m^2+14m+1\)
\(=m^2+14m+49-48\)
\(=\left(m+7\right)^2-48\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m+7\right)^2\ge48\)
\(\Leftrightarrow\left[{}\begin{matrix}m+7\ge4\sqrt{3}\\m+7\le-4\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\ge4\sqrt{3}-7\\m\le-4\sqrt{3}-7\end{matrix}\right.\)
Vì x1,x2 là hai nghiệm của phương trình (1) nên ta có:
\(\left\{{}\begin{matrix}x_1^2-\left(m+5\right)x_1-m+6=0\\x_2^2-\left(m+5\right)x_2-m+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2=\left(m+5\right)x_1+m-6\\x_2^2=\left(m+5\right)x_2+m-6\end{matrix}\right.\)
Ta có: \(x_1^2+x_1\cdot x_2^2=24\)
\(\Leftrightarrow\left(m+5\right)x_1+m-6+x_1\cdot\left[\left(m+5\right)x_2+m-6\right]=24\)
\(\Leftrightarrow\left(m+5\right)x_1+m-6+\left(m+5\right)\cdot x_1x_2+x_1\left(m-6\right)=24\)
Xin lỗi bạn, đến đây mình thua
a, khi m=1
\(=>x^2-6x+5=0\)
\(=>a+b+c=0=>\left[{}\begin{matrix}x1=1\\x2=5\end{matrix}\right.\)
b,\(\Delta=\left[-\left(m+5\right)\right]^2-4\left(-m+6\right)=m^2+10m+25+4m-24\)
\(=m^2+14m+1=m^2+2.7m+49-48\)\(=\left(m+7\right)^2-48\)
pt (1) có nghiệm \(< =>\left(m+7\right)^2-48\ge0\)
\(< =>\left[{}\begin{matrix}m\ge-7+4\sqrt{3}\\m\le-7-4\sqrt{3}\end{matrix}\right.\)
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=m+5\\x1x2=-m+6\end{matrix}\right.\)
tui nghĩ là đề thế này \(x1^2x2+x1x2^2=24=>x1x2\left(x1+x2\right)=24\)
\(=>\left(6-m\right)\left(m+5\right)=24\)
\(< =>-m^2-5m+6m+30-24=0\)
\(< =>-m^2+m+6=0\)
\(\Delta=1^2-4\left(-1\right).6=25>0\)
\(=>\left[{}\begin{matrix}m1=\dfrac{-1+\sqrt{25}}{2\left(-1\right)}=-2\left(loai\right)\\m2=\dfrac{-1-\sqrt{25}}{2\left(-1\right)}=3\left(tm\right)\end{matrix}\right.\)
a: Thay m=-5 vào (1), ta được:
\(x^2+2\left(-5+1\right)x-5-4=0\)
\(\Leftrightarrow x^2-8x-9=0\)
=>(x-9)(x+1)=0
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)
\(\Leftrightarrow4m^2+9m=0\)
=>m(4m+9)=0
=>m=0 hoặc m=-9/4
a, với =-3
\(=>x^2-6x+6=0\)
\(\Delta=\left(-6\right)^2-4.6=12>0\)
=>pt có 2 nghiệm phân biệt x3,x4
\(=>\left[{}\begin{matrix}x3=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x4=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)
b, \(\Delta=\left(2m\right)^2-4\left(m^2+m\right)=4m^2-4m^2-4m=-4m\)
pt đã cho đề bài có 2 nghiệm phân biệt x1,x2 khi
\(-4m>0< =>m< 0\)
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=-2m\\x1x2=m^2+m\end{matrix}\right.\)
có \(\left(x1-x2\right)\left(x1^2-x2^2\right)=32\)
\(< =>\left(x1-x2\right)^2\left(x1+x2\right)=32\)
\(< =>\left[x1^2-2x1x2+x2^2\right]\left(-2m\right)=32\)
\(< =>\left[\left(x1+x2\right)^2-4x1x2\right]\left(-2m\right)=32\)
\(< =>\left[\left(-2m\right)^2-4\left(m^2+m\right)\right]\left(-2m\right)=32< =>m=2\)(loại)
Vậy \(m\in\varnothing\)
Lời giải:
a. Với $m=-3$ thì pt trở thành:
$x^2-6x+6=0\Leftrightarrow x=3\pm \sqrt{3}$
b. Để pt có 2 nghiệm thì: $\Delta'=m^2-(m^2+m)=-m\geq 0$
$\Leftrightarrow m\leq 0$
Áp dụng định lý Viet: $x_1+x_2=-2m; x_1x_2=m^2+m$
Khi đó:
$(x_1-x_2)(x_1^2-x_2^2)=32$
$\Leftrightarrow (x_1-x_2)^2(x_1+x_2)=32$
$\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)=32$
$\Leftrightarrow [(-2m)^2-4(m^2+m)](-2m)=32$
$\Leftrightarrow 8m^2=32$
$\Leftrightarrow m^2=4$
$\Rightarrow m=-2$ (do $m\leq 0$)
Vây.........
a: Khi m = -4 thì:
\(x^2-5x+\left(-4\right)-2=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)
Pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)
a: Khi m=1 thì phương trình sẽ là x^2-2x-3=0
=>x=3 hoặc x=-1
b: Δ=(m+1)^2-4(m-4)
=m^2+2m+1-4m+16
=m^2-2m+17
=(m-1)^2+16>=16>0
=>Phương trình luôn có hai nghiệm phân biệt
x1+x2=m+1;x2x1=m-4
(x1^2-mx1+m)(x2^2-mx2+m)=2
=>(x1*x2)^2-m*x2*x1^2+m*x1^2-m*x1*x2^2+m*x1*x2-m^2*x1+m*x2^2-m^2*x2+m^2=2
=>(x1*x2)^2-m*x1*x2(x1+x2)+mx1^2+m*(m-4)-m^2*x1+m*x2^2-m^2*x2+m^2=2
=>(m-4)^2-m*(m-4)(m+1)+m(m-4)-m^2(x1+x2)+m*(x1^2+x2^2)+m^2=2
=>(m-4)^2-m(m^2-3m-4)+m^2-4m-m^2(m+1)+m*[(m+1)^2-2(m-4)]+m^2=2
=>m^2-8m+16-m^3+3m^2+4m+m^2-4m-m^3-m^2+m^2+m[m^2+2m+1-2m+8]=2
=>-2m^3+3m^2-8m+16+m^3+9m-2=0
=>-m^3+3m^2+m+14=0
=>\(m\simeq4,08\)
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
a,Với \(m=4\)thì phương trình tương đương với :
\(x^2-4x+3=0\)
Ta dễ dàng nhận thấy
\(a+b+c=1-4+3=0\)
nên phương trình sẽ có
\(\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(\left\{1;3\right\}\)
b,sửa đề thành cộng nhé :)
Theo hệ thức vi ét ta có :
\(x_1+x_2=m\)
Theo đề bài ta có : \(\left[{}\begin{matrix}x_1+x_2=4\\x_1+x_2=-4\end{matrix}\right.\)
\(< =>\left[{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\)