Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
⇔ \(5x^2-3x+\left(-7\right)-1=0\)
⇔ \(5x^2-3x-8=0\)
Δ=\(b^2-4ac\) \(=\left(-3\right)^2-4.5.\left(-8\right)=169\)>0
Vì Δ>0 nên pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{169}}{2.5}=\dfrac{8}{5}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{169}}{2.5}=-1\)
Theo Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{3}{4}\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{4}\end{matrix}\right.\)
\(A=-2\left(x_1-2\right)\left(x_2-2\right)\)
\(=\left(-2x_1+4\right)\left(x_2-2\right)\)
\(=-2x_1x_2+4x_1+4x_2-8\)
\(=-2x_1x_2+4\left(x_1+x_2\right)-8\)
\(=-2.\left(-\dfrac{1}{4}\right)+4.\left(-\dfrac{3}{4}\right)-8\)
\(=\dfrac{1}{2}-3-8\)
\(=\dfrac{1}{2}-11\)
\(=-\dfrac{21}{2}\)
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)
\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
Đk: \(x\ge-2\)
PT \(\Leftrightarrow\) \(x\left(12-4\sqrt{x+2}\right)+3x^2-20x-7=0\)
\(\Leftrightarrow x.\dfrac{144-16\left(x+2\right)}{12+4\sqrt{x+2}}+\left(x-7\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{-4x\left(x-7\right)}{3+\sqrt{x+2}}+\left(x-7\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left(3+\sqrt{x+2}\right)\left(3x+1\right)=4x\end{matrix}\right.\)
Đặt \(u=\sqrt{x+2}\Leftrightarrow x=u^2-2\left(u\ge0\right)\)
PT (2) \(\Leftrightarrow\left(3+u\right)\left(3u^2-5\right)=4\left(u^2-2\right)\)
\(\Leftrightarrow9u^2-15+3u^3-5u=4u^2-8\)
\(\Leftrightarrow3u^3+5u^2-5u-7=0\) \(\Leftrightarrow u=\dfrac{-1+\sqrt{22}}{3}\)
\(\Leftrightarrow x=\dfrac{5-2\sqrt{22}}{9}\)
Vậy...
Lời giải:
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow 3x^2-20x-7=4x\sqrt{x+2}-12x$
$\Leftrightarrow (x-7)(3x+1)=4x(\sqrt{x+2}-3)=4x.\frac{x-7}{\sqrt{x+2}+3}$
$\Leftrightarrow x-7=0$ hoặc $3x+1=\frac{4x}{\sqrt{x+2}+3}$
Nếu $x-7=0\Leftrightarrow x=7$ (tm)
Nếu $3x+1=\frac{4x}{\sqrt{x+2}+3}$
$\Leftrightarrow 9x+3+(3x+1)\sqrt{x+2}=4x$
$\Leftrightarrow 5x+3+(3x+1)\sqrt{x+2}=0$
$\Leftrightaqrrow 5x+3=-(3x+1)\sqrt{x+2}$
$\Rightarrow (5x+3)^2=(3x+1)^2(x+2)$
$\Leftrightarrow 9x^3-x^2-17x-7=0$
$\Leftrightarrow (x+1)(9x^2-10x-7)=0$
$\Rightarrow$........
Ta có: 3x2 - 2(x2 + 4x) + 3x + 2 = 0
=> 3x2 - 2x2 - 8x + 3x + 2 = 0
=> x2 - 5x + 2 =0
\(3x^2-2\left(x^2+4x\right)+3x+2=0\)
,<=> \(3x^2-2x^2-8x+3x+2=0\)
<=> \(x^2-5x+2=0\)