K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

`3x^2-2x=x^2+3`

`<=>3x^2-x^2-2x-3=0`

`<=>2x^2-2x-3=0`

Ptr có: `\Delta'=(-1)^2-2.(-3)=7 > 0`

  `=>`Ptr có `2` nghiệm pb

`=>{(x_1=[-b'+\sqrt{\Delta'}]/a=[1+\sqrt{7}]/2),(x_1=[-b'-\sqrt{\Delta'}]/a=[1-\sqrt{7}]/2):}`

19 tháng 2 2023

nhanh vậy cảm ơn

13 tháng 7 2016

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

13 tháng 7 2016

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)

20 tháng 4 2020

Bạn tham khảo câu trả lời tại đây:

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)

18 tháng 9 2017

a)  \(3+\sqrt{2x-3}=x\)

    \(\Leftrightarrow\sqrt{2x-3}=x-3\)

    \(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)

   \(\Leftrightarrow x=6\)

b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)

   \(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)

Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)

                           \(=-\left[a.\left(2\right)^3+b.2\right]-1\)

                            \(=-\left[2010\right]-1\)

                              \(=-2011\)

c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).

Ta chia đa thức vế trái cho  \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).

Vậy phương trình tích là:

     \(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)

   

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

1 tháng 3 2020

\(3x+3+\sqrt{x^3-x+1}-1=0\)

\(3\left(x+1\right)+\frac{x\left(x+1\right)\left(x-1\right)}{\sqrt{x^3-x+1}}=0\)

\(\left(x+1\right)\left(3+\frac{x\left(x-1\right)}{\sqrt{x^3-x+1}}\right)=0\)

Đk :\(-1\le x\le0,x\ge1\)

Kết hợp điều kiện ta được \(\left(3+\frac{x\left(x-1\right)}{\sqrt{x^3-x+1}}\right)\ge0\)

vậy  x  =  - 1