K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

vi q la so nguyen to >3 nen se co dang 3k+1 va 3k+2 (k thuoc N*)

neu q=3k+1 thi p=3k+3 nen p chia het cho 3 (loai)

khi q=3k+2 thi p=3k+4

q la so nguyen to >3 nen k la so le

ta co p+q=6(k+1) chia het cho 12

30 tháng 10 2023

 Để olm giúp em, em nhé! 

Vì q là số nguyên tố lớn hơn 3 nên q có dạng:

         q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)

hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)

Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)

Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4

Theo bài ra ta có:

p + q = 3n + 2 + 3n + 4

p + q= 6n + 6 (n là số tự nhiên lẻ)

p + q = 6.(n+1)

Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)

 

4 tháng 11 2023

Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2. (\(k\in N\)*)

Nếu q=3k+1 thì p=q+2=3k+3. Khi đó p chia hết cho 3 nên không phải số nguyên tố (loại)

Nếu q=3k+2 thì p=q+2=3k+4. Khi đó p+q=6k+6=6(k+1)

Vì q=3k+2 là số nguyên tố nên k là số lẻ (nếu k chẵn thì q chia hết cho 2). Khi đó k có dạng 2m+1 (\(m\in N\)*)

Suy ra p+q=6(2m+1+1)=12(m+1) chia hết cho 12 (đpcm)

 

2 tháng 11 2015

Vì p-q=2 nên p=q+2

Lại có p>q>3 nên q=3k+1, 3k+2 ( k là stn và k>0 )

Loại q=3k+1 vì nếu q=3k+1 thì p=3(k+1) chia hết cho 3 là hợp số( vô lý)

Vậy q=3k+2 nên p=3(k+1)+1

Đặt k=2m, 2m+1

Nếu k=2m thì q=3(2m+1)+1. Mà 3(2m+1) là số lẻ nên q chẵn. Mà q là số nguyên tố và q>2 nên q lẻ ( vô lý)

Vậy k=2m+1

Khi đó p+q=3(2m+1)+2+3(2m+2)+1= 6m +5 + 6m + 7 = 12m+12 =12(m+1) chia hết cho 12