HT
Hoàng Thanh Tuấn
31 tháng 5 2017
- Đk : \(\hept{\begin{cases}x-3\ne0\\x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-2\\x\ne2\end{cases}}}\)
- \(P=\frac{\left(2+x\right)^2+4x^2-\left(2-x\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{x^2\left(2-x\right)}{x\left(x-3\right)}\)\(\Rightarrow P=\frac{8x+4x^2}{\left(x-2\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)\(\Rightarrow p=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x\left(x-2\right)}{3-x}=\frac{4x^2}{3-x}\)
- \(|x-5|=2\)
- nếu \(x\ge5\)=> x-5=2 =>x=7 (TM) => \(P=\frac{4.7^2}{-7+3}=-49\)
- Nếu \(x< 5\)=> x-5 = -2 => x = 3 Loại
Đúng(0)