K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

Rút gọn P

8 tháng 10 2020

đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có:

\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)

\(P=\frac{\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\sqrt{x}}\div\frac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x+\sqrt{x}-1\right)\left(\sqrt{x}-x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)

\(P=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\sqrt{x}}\cdot\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{2x+\sqrt{x}-1}\)

\(P=\frac{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}\right)\sqrt{x}}\)

\(P=\frac{x-\sqrt{x}+1}{\sqrt{x}}=\frac{x\sqrt{x}-x+\sqrt{x}}{x}\)

27 tháng 1 2020

;))) tớ nhớ dạng RGBT căn bậc 3 lớp 9 nhì :)))???? 

\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x+1}}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\frac{2x+1-\sqrt{x}\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x+1}\right)}.\left(1-2\sqrt{x}+x\right)\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

10 tháng 8 2020

P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)

P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)

P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi x=1/4