Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi ... cái này ...... bạn làm đc mà thế m vào lập delta thôi
Phương trình \(x^2+\left(2m+1\right)x-n+3=0\)0
Khi m=2 thì
phương trình thành \(x^2+5x-n+3=0\)
(tìm a,b,c)
Lập \(\Delta=b^2-4ac\)
\(=25+4n-12\)
\(=4n+13\)
để pt có nghiệm thì \(n\ge\frac{-13}{4}\)
Vì phương trình có nghiệm theo viet
\(\hept{\begin{cases}x_1+x_2=-5\\x_1.x_2=-n+3\end{cases}}\)
để phương trình có 2 nghiệm dương thì tổng của chúng phải lớn hơn 0 mà theo viet ta thấy là âm
Nên ko có giá trị nguyên dương nào của n để pt có 2 nghiệm dương
\(2x^2+\left(m-3\right)x=0\)
\(\Leftrightarrow x\left[2x+\left(m-3\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3-m}{2}\end{cases}}\)
Phương trình có nghiệm nguyên dương bé hơn 3 khi \(\frac{3-m}{2}=t\) với t = 1 , 2
\(t=1\Leftrightarrow m=1\)
\(t=2\Leftrightarrow m=-1\)
Vậy phương trình có nghiệm x = 1 <=> m = 1 ; x = 2 <=> m = -1
ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)
\(\Delta=4m^2-8m+9\)
\(\Delta=\left(2m-2\right)^2+5>0\)
do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2
áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)
theo bài ra: x13 + x23 = 27
<=> (x1 + x2 )3 - 3x1x2 (x1+x2) - 27=0 <=> (2m-1)3 - 3(m-2) ( 2m-1) -27 =0
<=> 8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0
<=> 8m3 - 18m2 + 21m - 34 =0 <=> (m-2)(8m2 -2m+17) = 0
\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2
Vậy m=2 thỏa mãn đề bài
( chú giải: PTVN là phương trình vô nghiệm)
a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2
và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3
Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha