Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1
ta có
△=(m-2)2-4(m-3)=m2-4m+4-4m+12=m2-8m+16=(m-4)2
để phương trình có 2 nghiệm phân biệt thì △>0 suy ra m≠4
nhận xét:
x1,x2 là độ dài của 2 tam giác vuông cân mà x1,x2 phân biệt nên
x1=\(-x2\) vì độ dài thì sẽ bằng |x1| và |x2|
áp dụng hệ thức vi-et ta có:
\(\begin{cases} x1+x2=m-2(1)\\ x1x2=m-3(2) \end{cases}\)→x1+x2-1=x1x2 \(\Leftrightarrow \)(x1-1)(x2-1)=0
\(\Leftrightarrow \)\(\left[\begin{array}{} x1=1\\ x2=1 \end{array} \right.\)\(\Leftrightarrow \)x1x2=-1(vì x1=-x2) \(\Leftrightarrow \)m-3=-1\(\Leftrightarrow \)m=2
vậy m=2 thì....
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA
(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m
(2) x1^2 +x^2 =12
=> 4(m+1)^2 -4m =12
m^2+m+1=3 => m=1, -2
=> m
(3) từ (2) GTNN A=3/4 khi x=-1/2
có thể sai đừng tin
Để phương trình có 2 nghiệm:
\(\Delta\ge0\Rightarrow\left[-\left(m+2\right)\right]^2-4.1.\left(3m-3\right)\ge0\\ \Leftrightarrow m^2+4m+4-12m+12\ge0\\ \Leftrightarrow m^2-8m+16\ge0\forall m\)
Theo Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left[-\left(m+2\right)\right]}{1}=m+2\\x_1.x_2=\dfrac{3m-3}{1}=3m-3\end{matrix}\right.\)
x1, x2 là độ dài của một giam giác vuông có cạnh huyền bằng 5.
Theo định lý Py-ta-go ta có:
\(x_1^2+x_2^2=5^2\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=25\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\\ \Leftrightarrow\left(m+2\right)^2-2.\left(3m-3\right)=25\\ \Leftrightarrow m^2+4m+4-6m+6-25=0\\ \Leftrightarrow m^2-2m-15=0\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
Vậy...
a) \(\Delta\)=(m-3)2-4.1.(2m-11)=m2-14m+53=(m-7)2+4\(\ge\)4.
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) Từ ycđb, ta có: x12+x22=42 \(\Leftrightarrow\) (x1+x2)2-2x1x2=16 \(\Leftrightarrow\) (m-3)2-2(2m-11)=16 \(\Leftrightarrow\) m2-10m+15=0 \(\Leftrightarrow\) \(m=5\pm\sqrt{10}\).
a: Khi m=-3 thì (1): x^2-(-x)-2=0
=>x^2+x-2=0
=>x=-2 hoặc x=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có 2 nghiệm