K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

ĐK \(\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

a, \(P=\frac{x^2+26x-19}{\left(x+3\right)\left(x-1\right)}-\frac{2x}{x-1}+\frac{x-3}{x+3}\)\(=\frac{x^2+26x-19-2x\left(x+3\right)+\left(x-3\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}\)

\(=\frac{x^2+26x-19-2x^2-6x+x^2-4x+3}{\left(x+3\right)\left(x-1\right)}\)\(=\frac{16\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=\frac{16}{x+3}\)

b. Với \(x=3\Rightarrow P=\frac{16}{3+3}=\frac{8}{3}\)

Với \(x=-1\Rightarrow P=\frac{16}{-1+3}=8\)

c. \(P=4\Rightarrow\frac{16}{x+3}=4\Rightarrow x+3=4\Rightarrow x=1\)

d. \(P\in Z\Rightarrow x+3\inƯ\left(16\right)\)

\(\Rightarrow x+3\in\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)

\(\Rightarrow x\in\left\{-19;-11;-7;-5;-4;-2;-1;1;5;13\right\}\)

14 tháng 7 2017

\(P=\frac{x^2+26x-19}{\left(x-1\right)\left(x+3\right)}-\frac{2x}{x-1}+\frac{x-3}{x+3}=\)

\(P=\frac{x^2+26x-19-2x\left(x+3\right)+\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\)

\(P=\frac{x^2+26x-19-2x^2-6x+x^2-4x+4}{\left(x-1\right)\left(x+3\right)}=\)

\(P=\frac{16x-15}{\left(x-1\right)\left(x+3\right)}\)

4 tháng 12 2018

a, DKXD: \(x\ne\pm3\)

\(A=\left(\frac{x}{x+3}+\frac{x-1}{x-3}+\frac{2x^2+x-3}{9-x^2}\right):\frac{-2}{x-3}\)

\(=\left(\frac{x\left(x+3\right)+\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{-2x^2-x+3}{x^2-9}\right):\frac{-2}{x-3}\)

\(=\left(\frac{2x^2+5x-3}{x^2-9}+\frac{-2x^2-x+3}{x^2-9}\right):\frac{-2}{x-3}\)

\(=\frac{4x}{x^2-9}:\frac{-2}{x-3}=\frac{4x}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x-3}{-2}=\frac{4x}{-2\left(x+3\right)}=\frac{-2x}{x+3}\)

b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3=0\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

Thay x=-1 =>\(A=\frac{-2.\left(-1\right)}{-1+3}=1\)

thay x=3 =>\(A=\frac{-2.3}{3+3}=-1\)

c, De \(A\in Z\Leftrightarrow x+3\in U\left(-2\right)=\left\{1;-1;2;-2\right\}\)

<=>x thuoc {-2;-4;-1;-5}

4 tháng 12 2018

ĐK: \(x\ne\pm3\)

\(A=\left(\frac{x}{x+3}+\frac{x-1}{x-3}+\frac{2x^2+x-3}{9-x^2}\right):\frac{-2}{x-3}\)

\(=\left(\frac{x\left(x-3\right)+\left(x+3\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}+\frac{-2x^2-x+3}{x^2-9}\right).\frac{x-3}{-2}\)

\(=\left(\frac{x^2-3x+x^2+2x-3}{\left(x-3\right)\left(x+3\right)}+\frac{-2x^2-x+3}{\left(x-3\right)\left(x+3\right)}\right).\frac{x-3}{-2}\)

\(=\frac{-2x}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{-2}=\frac{x}{x+3}\)

b, \(x^2-2x-3=0\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

x = 3 không thỏa mãn ĐKXĐ

Với x = -1 (thỏa mãn ĐKXĐ) thì \(A=\frac{x}{x+3}=\frac{-1}{-1+3}=-\frac{1}{2}\)

c, \(A\in Z\Rightarrow\frac{x}{x+3}\in Z\Rightarrow x⋮\left(x+3\right)\)

\(\Rightarrow\left(x+3\right)-3⋮\left(x+3\right)\Rightarrow-3⋮\left(x+3\right)\Rightarrow x+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-6;-4;-2;0\right\}\) (thỏa mãn điều kiện)

11 tháng 12 2019

ĐKXĐ:\(x\ne-3;x\ne3\)

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

\(=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\frac{3x}{x+3}\)

b

\(\left|x-2\right|=1\Rightarrow x-2=1\left(h\right)x-2=-1\Rightarrow x=3;x=1\)

Tại \(x=3\) thì \(A=-\frac{3\cdot3}{3+3}=-\frac{9}{6}=-\frac{3}{2}\)

Tại \(x=1\) thì \(A=-1\cdot\frac{3}{1+3}=-\frac{3}{4}\)

c

Để A nguyên thì \(\frac{3x}{x+3}\) nguyên

\(\Rightarrow3x⋮x+3\)

\(\Rightarrow3\left(x+3\right)-9⋮x+3\)

\(\Rightarrow9⋮x+3\)

\(\Rightarrow x+3\in\left\{1;3;9;-1;-3;-9\right\}\)

\(\Rightarrow x\in\left\{-2;0;6;-4;-6;-12\right\}\)

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

9 tháng 8 2021

a, ĐK : \(x\ne\pm3;\frac{1}{2}\)

\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)

\(=\left(\frac{\left(x-1\right)\left(x-3\right)+2\left(x+3\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{2x-1-2x-1}{2x+1}\right)\)

\(=\frac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}:\left(-\frac{2}{2x+1}\right)\)

\(=\frac{-2x+6}{\left(x+3\right)\left(x-3\right)}.\frac{-\left(2x+1\right)}{2}=\frac{2x+1}{x+3}\)

b, Ta có : \(\left|x+1\right|=\frac{1}{2}\)

TH1 : \(x+1=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2}\)

Thay vào biểu thức A ta được : \(\frac{-1+1}{-\frac{1}{2}+3}=0\)

TH2 : \(x+1=-\frac{1}{2}\Leftrightarrow x=-\frac{3}{2}\)

Thay vào biểu thức A ta được : \(\frac{-3+1}{-\frac{3}{2}+3}=\frac{-2}{\frac{3}{2}}=-\frac{4}{3}\)

9 tháng 8 2021

c, Ta có : \(P=\frac{x}{2}\Rightarrow\frac{2x+1}{x+3}=\frac{x}{2}\Rightarrow4x+2=x^2+3x\)

\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

b, Ta có : \(\frac{2x+1}{x+3}=\frac{2\left(x+3\right)-5}{x+3}=2-\frac{5}{x+3}\)

\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

x + 31-15-5
x-2-42-8